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Predictions are made based on an analysis of a new nonlinear theory of martensitic
transformations introduced by the authors. The crystal is modelled as a nonlinear
elastic material, with a free-energy function that is invariant with respect to both
rigid-body rotations and the appropriate crystallographic symmetries. The pre-
dictions concern primarily the two-well problem, that of determining all possible
energy-minimizing deformations that can be obtained with two coherent and
macroscopically unstressed variants of martensite. The set of possible macroscopic
deformations obtained is completely determined by the lattice parameters of the
material. For certain boundary conditions the total free energy does not attain a
minimum, and the finer and finer oscillations of minimizing sequences are interpreted
as corresponding to microstructure. The predictions are amenable to experimental
tests. The proposed tests involve the comparison of the theoretical predictions with
the mechanical response of properly oriented plates subject to simple shear.
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390 J. M. Ball and R. D. James

Additional crystallographic background is given for the model, and the theory is
compared with the ‘linearized’ model of Khachaturyan, Roitburd and Shatalov.
There are some similarities in the predictions of the two theories, but also some major
discrepancies.

1. Introduction

A new model for predicting the fine microstructures observed during structural phase
transformations in crystals was explored by Ball & James (1987). Briefly, the
argument is the following. Bulk free energy functions for crystals which account
properly for crystallographic symmetry are typically such that the infimum of the
total free energy is not in general attained ; this contrasts, for example, with various
widely used free energy functions for rubberlike materials for which energy
minimizers can be proved to exist (Ball 1977). Non-attainment of the infimum means
that there will be sequences of configurations that converge on average in a certain
sense and that reduce the total free energy as closely as desired to its infimum, but
for which the limiting configuration is not a minimizer of the free energy. Necessarily
these sequences involve finer and finer features, and our hypothesis is that they can
model the extremely fine microstructures which frequently appear in specimens
undergoing structural transformations.

This idea is worked out for internally twinned martensite in Ball & James (1987).
The basic microstructure associated with internally twinned martensite is the
austenite/martensite interface, which consists of fine bands of the martensitic phase
on one side of an interface and a homogeneous austenitic phase on the other side. A
study of the minimizing sequences associated with this microstructure delivers
austenite/martensite interfaces whose orientation and arrangement agree with
experiment. In fact, the theory in a special case delivers exactly the equations of the
crystallographic theory of martensite (see Wechsler et al. (1953) and numerous later
surveys, for example Christian (1975) and Wayman (1964)). This theory is purely
kinematic in origin, and does not involve energy considerations. The minimum
energy approach appears superior in several respects; in particular, it involves no a
priori geometric restrictions on the domains occupied by the phases and could
predict the microstructure which is produced by general mixed boundary conditions.
Also, in the case of internally twinned martensite, it delivers results that are
somewhat sharper than those of the crystallographic theory (see Ball & James 1987,
§5).

The purpose of this paper is to derive additional results of the theory which are not
associated with the austenite/martensite interface or the crystallographic theory of
martensite and which are amenable to simple quantitative experimental tests. Of
particular interest to us in setting up experimental tests of the theory are two
criteria. First, the input data on the material needed to define the experimental test
are to be completely specified by measurements of the transformation strain matrix
and the change of symmetry at the transformation. This data has already been
measured for all of the common transformations. Second, certain features of the
predicted microstructure or response are to be uniquely determined by theory once
the input data on the material and the boundary data are fixed. Because of this
uniqueness, these predictions also provide ideal test cases for numerical methods and
relate to recent numerical studies by Collins & Luskin (1989). In general a unique
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Tests of fine microstructure 391

pattern of microstructure is not to be expected, unless very special boundary
conditions which are associated with the particular material are applied.

As in Ball & James (1987) we suppose that the static material response of a crystal
is determined by a free energy density W(A4,6) depending on the deformation
gradient 4 and temperature §. We ignore any contribution to the energy associated
with interfaces between phases, and we ignore gravitational potential energy. We
make the hypothesis that at a fixed temperature 6, W(-, 8) has an absolute minimum
at 3 x 3 matrices 4 belonging to the union of a finite number of wells, that is to a set
M of the form N

M= USO(3)U, (1.1)
i=1
where each U, is a distinct positive definite symmetric matrix representing the
transformation strain of a particular variant (§2). Interfaces between different
energy-minimizing phases correspond to pairs of matrices 4, BeM with

A-B=aQ®n (1.2)

for non-zero vectors a, n € B3; here n gives the normal to the interface. Such rank-one
connections are impossible in the case of one well (i.e. when N =1 in (1.1)) and this
can be shown (see Theorem 4.3) to rule out the possibility of fine microstructure at
minimum energy. The simplest case leading to microstructure is that of two wells.

To formulate the experimental tests we solve a special case of the two-well problem.
This problem consists in determining the possible microstructures that can arise from
energy-minimizing sequences in the case N = 2. We assume that det U, = det U,, and
that M has a rank-one connection. After a change of variables, the two orbits can
then be put in the canonical form (see (5.4) and (5.5))

M =180 (3)8* U SO (3)8, (1.3)

where St = 14 8e; ® ¢,, § > 0 and {e,, ¢,, e,} is an orthonormal basis for /3. The cases
in which the wells do not have a rank-one connection or det U, # det U, remain
open. Assuming without loss of generality that W(4,60) = 0 for A€M, we make the
further hypothesis that the boundary data for the crystal are such that the infimum
of the total free energy,

I(y) = J W(Dy(x), 0) dx, (1.4)
Q

is also zero. Here 2 < R3, y:Q — R® is the deformation, and Dy is the deformation
gradient. This implies that for any minimizing sequence y'” the deformation gradient
Dy (x) must in some sense approach the set M of minimizing matrices. Said
differently, the Young measure v,, €€, of Dy'? is supported on M. The Young
measure, which gives the limiting distribution as j— 0o of the values of Dy in a
vanishingly small neighbourhood of each point «, is the key tool used in this paper
for the description and analysis of microstructure.

We describe briefly the main results obtained. Under the preceding assumptions
and appropriate technical hypotheses, we show (Theorem 5.1) that the deformation
gradient of the weak limit y of any minimizing sequence y is such that Dy(x)™ Dy(x)
belongs for each xeQ to the set R of symmetric matrices of the form

011 0 013
0 1 0 (1.5)
CYl3 O CY33

Phil. Trans. R. Soc. Lond. A (1992)
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1+ &

1 C 1+ 6

11

Figure 1. Domain R of values of (', and C,, that can be obtained by arrangements
of two variants.

in the basis {e, e,, ¢,} with (%, = O}, U3, —1 and with (C,,, C,,) restricted to lie in the
shaded domain shown in figure 1. Any such y is a plane strain (Theorem 5.3).
Conversely, if y is sufficiently smooth and Dy(x)* Dy(z) e R in 2 then y is the weak
limit of some minimizing sequence y¥ (Corollary 6.2, Theorem 6.4). The main idea
of the proof of the necessary conditions is to exploit the information on the Young
measure provided by the weak continuity of jacobians. The sufficiency is proved by
brute force constructions involving simple layering, layers within layers and
transition regions near approximate interfaces.

We then consider the closely related question of whether a crystal with linear
displacement boundary conditions

yx) = (AU;+(1—-A)RU,)x, x€0Q, (1.6)

with ReSO(3), A€[0,1] and rank (U; —RU,) = 1 has a unique microstructure. We
establish uniqueness for certain materials (e.g. those that undergo cubic to tetragonal
or orthorhombic to monoclinic transformations). The sense of uniqueness here is that
the Young measure of any minimizing sequence is uniquely determined and is the
same Young measure as that associated with a simple laminate constructed from the
two matrices U; and RU,. In particular, if 0 < A < 1 then the minimum of I is not
attarned.

Over the past 25 years a different theory designed to predict the morphology
of crystal microstructure via energy minimization has been developed by
Khachaturyan (1967, 1983), Roitburd (1967, 1978) and Khachaturyan & Shatalov
(1969). This theory has several ingredients in common with ours; for example,
interface orientations are calculated by seeking rank-one connections between
energy wells, a link is made with the crystallographic theory of martensite
(Khachaturyan 1983, p. 380), and multiple layering is identified as a mechanism for
energy reduction (cf. Khachaturyan & Shatalov (1969) and the ‘polydomain plates’
of . Roitburd (1978)). In a recent paper Kohn (1991a) has shown that the
Khachaturyan—Roitburd-Shatalov (KRS) theory can, roughly speaking, be thought
of as a ‘linearization’ of the present theory in which the displacement u(x) = y(x) —x
is assumed small, and the free energy function W(Dy, ) is replaced by the function

Win(e) = min {w;+3a,(e—E,;),e—E;>} (1.7)

1<i<N

of the linearized strain e = e(u) = }(Du+ (Du)™). In (1.7) o, represents the tensor of

Phil. Trans. R. Soc. Lond. A (1992)
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linear elastic moduli of the ith phase, £, = E is the stress-free strain of the ¢th phase,
and w, its energy. Thus the energy wells (1.1) of the nonlinear theory are replaced by
the set

My, ={AeM>3: LA+ A")=1+E,fori=1,...,N}.

Note that the energy W, in (1.7) is not quadratic, so that the KRS theory is still
nonlinear, in contrast to usual linearized theories of elasticity. To give it a status with
respect to the present theory (which does not assume small displacements and in
particular does not linearize rotations), it appears to be necessary to assume that for
each z the distance of the deformation gradient Dy(x) from the set M in (1.1) scales
in a particular way with respect to max, ;5 |U;—1|, which is itself small (see the
derivation based on this idea in §9).

Kohn (1991 @) and, independently, Pipkin (1991) calculate the relaxation of W, in
the case when N = 2 and the elastic moduli &, and «, of the two wells are equal. Kohn
shows that his calculation is essentially equivalent to that of Khachaturyan, despite
the apparently rather different formulations. He also characterizes the possible
energy-minimizing microstructures in terms of the H-measures of Tartar (1990) and
Gérard (1991), and makes a number of interesting connections to the metallurgical
literature. From these calculations it is possible in the linearized context to find the
analogue of figure 1, the deformations possible by mixing two variants. (Kohn
(1991 b) also finds the relaxation of an energy with two quadratic wells with unequal
but well-ordered elastic moduli. The assumption of equal against unequal moduli
does not affect the argument that the domain analogous to figure 1 is the convex hull
of M;,,, which holds for general pairs of positive-definite linear elastic moduli. A plane
version of the relaxation of two wells was given by Lurie & Cherkaev (1988).) In this
case, instead of (1.3) we have

My, = {A M3 A+ A" = §* +(S*)T or S~ + (S7)%,

and the domain analogous to figure 1 is simply the convex hull of M;;, (cf. Kohn
1991 a; Pipkin 1991; Khachaturyan 1983). This illustrates a significant difference
between the predictions of the present and linearized theories: if we regard C as
formally analogous to the quantity (Du+(Dw)™)+1 of the linearized theory,
consistent with the process of linearization, then the linearized theory predicts that
the domain of figure 1 collapses to the single point (C};, C33) = (1, 1). Another striking
difference between the predictions of the theories is that the analogue in the
linearized theory of the uniqueness theorem for microstructures under the linear
boundary conditions (1.6) is false. Finally, it appears that the linearized theory
makes large errors in the prediction of deformed shapes (§9d).

The plan of the paper is as follows. In §2 we describe the crystallographic aspects
of the problem, providing information on several different phase transformations
that are discussed later. In particular we show how to make the passage from a
description of the local deformation of a crystal in terms of lattice vectors to a
continuum model. Of particular relevance here is a version (Theorem 2.4) of a result
of Pitteri (1985) and Ericksen (1980, 1989) which allows one to cut down in a rational
manner the size of the symmetry group of a crystal, so that it does not contain the
arbitrarily large lattice-invariant shears associated with plasticity. This result is used
in Theorem 2.10 to determine the structure of the energy wells corresponding to a
given change of symmetry. Rank-one connections between these wells yield twinned
configurations that minimize energy; these connections are determined for several

Phil. Trans. R. Soc. Lond. A (1992)
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394 J. M. Ball and R. D. James

transformations by using Theorem 2.10 and the results are compared with
observations in table 1.

In §3 we collect together results on Young measures and weak continuity. In §4
we introduce the main technical hypotheses on the free energy density W that are
needed for the analysis. We then show (Proposition 4.1) that under our hypotheses
the Young measure of a minimizing sequence is supported in M, and analyse the one-
well problem. Sections 5 and 6 contain the results on necessary and sufficient
conditions for limiting deformation gradients in the two-well problem described
above. In §7 the uniqueness theorem (Theorem 7.1) for simple laminated
microstructure is proved; this section also contains a result (Theorem 7.3) giving
conditions under which microstructures formed using three wells in the cubic-
tetragonal case actually only involve deformation gradients from two of the wells.

Section 8 describes the proposed experimental tests based on the results for the
two-well problem. The nature of the proposed experiments is to compare the overall
deformations y and associated Young measures that are predicted with those
observed. Recently, Chu (1991) has invented a loading device which accurately
imposes simple shear boundary conditions to the edges of a crystalline plate, and has
considered various theoretical problems associated with simple shear of a crystal. His
device should be applicable to our proposed experiments.

Section 9 compares our theory with that of Khachaturyan, Roitburd and
Shatalov.

Finally, in §10 we make some comments on possible explanations for the limited
fineness of observed microstructures, which cannot be predicted by consideration of
minimizing sequences for (1.4).

2. Cubic to tetragonal, cubic to orthorhombic and orthorhombic to
monoclinic transformations

Our results and proposed experiments will be highly specific to the type of
transformation and even to the type of material (e.g. its precise lattice parameters)
undergoing that transformation. In this section we collect some information on
several transformations so that later we will be able to contrast the implications of
our results for different materials.

Our theoretical calculations are adapted to reversible structural transformations,
although recent calculations by Kohn & Sternberg (1989, §4) suggest that a kind of
metastability and hysteresis not present in one-dimensional problems or problems
associated with fluid mixtures can occur for the energies described here. For intuitive
remarks in this direction, see also James (1987, §6). We begin by setting up the
theory for cubic to tetragonal transformations. For examples of materials undergoing
these transformations see table 1. A prototypical alloy for the cubic to tetragonal
transformation is InTl, which is an unordered face-centred cubic (Fcc) solid solution
for 6 > 6,. To describe Fcc and other Bravais lattices we introduce the following
definition.

Definition 2.1. 4 set of points £ in R? is a Bravais lattice if and only if there are
three linearly independent vectors (¢,, ¢, g5) th R® such that

def
L = PLg,) = {xe R®:x = T i, where v', v, v® are integers.} (2.1)

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2. Examples of lattice vectors and lattice parameters for an Fcc or an ot lattice. For lattice
vectors and parameters shown in parentheses. The notation is consistent with equations (2.2)—(2.5).

A Bravais lattice L¥CC is an rec lattice if and only if there is an a > 0 and vectors
(€, €5, eS) with

2 01
(e¢res) =1a?|0 2 1 (2.2)
1 1 2
such that LECC = L(e8). (2.3)
A Bravais lattice L¥CT is an For lattice if and only if there are scalars o, > 0, oy > 0 and
vectors (e}, eb, eb) with
W0 o
(€5~ €5) =[ 0 i io ] (2.4)

T R (G
such that LECT = P(e). (2.5)

The vectors {g;}, {e5} and {e}} are called lattice vectors and the superscripts ¢ and t
stand for cubic and tetragonal respectively. The scalars «, a, and «, are lattice
parameters and are measured for many crystals both before and after transformation ;
o represents the length of a side of the cubic unit cell while @, and «, represent the
lengths of the unequal sides of a tetragonal unit cell. Note that the edges of these unit
cells are not lattice vectors for Fcc or vor lattices (see figure 2). Definition 2.1 also
omits translations of lattices, without loss of generality for our purposes,

A theorem in crystallography (cf. Ericksen 1977, egs (10.2), (10.3)) implies that a
Bravais lattice does not uniquely determine its lattice vectors.

Theorem 2.2. Z(g,) = ZL(7,) for sets of linearly independent vectors {g,, g,, g5} and
{T1s Ga» To} i R® if and only if there is a 3 x 3 matrix of integers () with determinant + 1
such that

7o = 11 9;- (2.6)
Let ¢ denote the group introduced by Theorem 2.2:
def

G ={ueM>3 . yleZ1,je{1,2,3} and det u = +1}. (2.7)

Now we introduce a description for the change from an rcc to an rer lattice. It is
found from X-ray studies that for InTl (and several other materials), the change
from cubic to tetragonal phases is accomplished by an exact linear deformation of the

Phil. Trans. R. Soc. Lond. A (1992)
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396 J. M. Ball and R. D. James

roc lattice. To find all such linear deformations, we first fix an Fcc lattice, denoted
by £°¢, and an et lattice #*. By Definition 2.1 there are lattice vectors {&f} and {e}
with associated lattice parameters &, &, and &, such that

L= L), L= L@ (2.8)

(2 T

All such linear deformations are given below.

Proposition 2.3. F.¥° = " for FeGL (3) if and only if there is a fe¥ and a
Q€0 (3) such that
Fe; = i QU e (2.9)
Where [7‘3 = 771 1 + (772_ _1) 63 ® 63’ 771 = 0_61/0_‘> 1 (210)
To=L/0, €= (25— —&)/a, e = 1-,‘

Proof. Clearly F.£°¢ = £ (Fef) for any FeGL (3), so to prove (2.9) we only need to
show that there is a @O (3) such that

LQU, &) = L(@). (2.11)
But by straightforward calculation

@ 0 %
[”355'(735}3]=[ U1 i } (2.12)
@ e )
Hence, there is a @ €O (3) such that
¢ =QUyes, i=1,23, (2.13)
so that (2.11) certainly holds with this . N

We aim for a theory of the cubic to tetragonal transformation but not including
the large shears associated with plasticity. Very large shears in practice cause the
widespread appearance of dislocations which make the notion of a Bravais lattice
inadequate to describe the state of the crystal. Thus, we consider an appropriate
neighbourhood of the lattice vectors {ef} which also includes {e{}. Since this
neighbourhood is to serve as the domain of the free energy, it is important that it be
invariant under a group which will become the invariance group of the free energy.
At the same time, this neighbourhood should omit the large shears inherent in the
group %. For the purpose of the next theorem, due essentially to Pitteri (1984) and
Ericksen (1980, 1984, 1989), we define the point group Z(g,) of a Bravais lattice Z(g,)
by

def

P(g;) ={Qe€0(3):Qg; = uig, for some pe%}. (2.14)
It can be easily shown that if Z(g,) = Z(7,), then Z(g,) = 2(g,), so that the point
group is associated with the lattice itself. We use the notation
def

P = P(FS). (2.15)

2° consists of the 48 orthogonal transformations that map a cube into itself, denoted
m3m in Hermann-Mauguin notation. Also, we use the notation ¢.4#" to denote the set
of all vector-triples of the form {@ f,, @ f,. @fs}, @€ O (3), {f;}€ A", whereas we denote
by u[A'] the set of vector-triples of the form ulf;, pe9, {file V.

Phil. Trans. R. Soc. Lond. A (1992)
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Theorem 2.4 (Ericksen 1980; Pitteri 1984). (Parry (1976, 1989) also implicitly
used the neighbourhood idea.) Let Z(g;) be a Bravais lattice. Then there is a bounded
open neighbourhood N < (R?)® with the following properties:

(i) {gite A"
(ii) A" is O (3) wnvariant: QN = N/ VQeO (3);

(iii) for each peG, (N 1= N or y{N ] 0N N = ;

(iv) of u€Y satisfies u[N'] = N, then plg; = Qg, for some Qe P(g,).

If {g,} is such that P(g;) = P°, any bounded open neighbourhood satisfying (i), (ii) and
(iii) has the property that

UN =N peb < plg; = Qg, for some QeP°. (2.16)
Proof. We first show that any set 4/, of the form

def
N o=l lfe fi—g90 95l <€ (2.17)

satisfies (i)—(iv) with e sufficiently small. The norm in (2.17) is defined by |M;|* =
tr(AA"), where 4 = M;¢' ® ¢’ and g¢'-g; = &} (the {g'} are reciprocal lattice veetors)
Clearly (i) and (ii) are satisfied by A4, for any ¢ > 0. If ye¥ satisfies ulg; = Qg, for
some Qe P(g;), then u¥ g’ = QTg*, so that the norm in (2.17) is invariant under the
change f, - u[ f;]. Hence, u[A,] = A, for every e > 0, which is the first alternative of
(iii). Let #(g;) denote the set of all pe¥ satisfying ulg; = Qg, for some Q € 2(g,), so
H (gz) is conjugate to g(gz) Suppose for a contradlctlon that for each ¢ > 0, there is

a ,u eg H(g;) and an {gZ}EJV such that /Ll gJE./V Since A is bounded for any

fixed ¢, > 0, and since the g, are linearly independent, we can assume after passing
to a subsequence that

(€), . () -~ (e), (€)

Wiy 90> Fi Hi95€N (2.18)
which implies that for some ¢, > 0,

(€) .
wi=pweb4—H(g,) for 0<e<e, (2.19)

@, . . . o
since each uf is a matrix of integers. But by continuity

7:°0;=9:9; and TGy 5 G = 917 (2.20)

Hence /g, = Qg, for some Q€O (3), i.e. i€ #(g;). This contradicts (2.19) and so we

conclude that there is an ¢; > 0 such that every ue¥%—#(g;,) and every {f;}e. ¥,
satisfy ulf;¢ A, , which completes the proof of (iii) and (iv).

Now assume that 2(g,) = P°, the cubic point group given by (2.15), and suppose

that the bounded open set 4" satisfies (i)—(iii). An argument analogous to the one

given above implies that because 4" is bounded, ¥, = {peb u[N = A} is a finite
group and it contains #(g;). The group ¥, induces a conjugate group on GL(3)
through the relation

wlg;=Fg;, FeGL(3), (2.21)

which we call 2. A theorem in group theory (Weyl 1950, section II1 §11) to the effect
that every finite group of #n x » matrices is conjugate to a subgroup of the orthogonal
group then implies that 2,, = MOM~* where M € GL*(3), and @ is a finite subgroup of

Phil. Trans. R. Soc. Lond. A (1992)
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0 (3). Since #¢ = 2, it is easily shown that M = a), where ae R and @, €S0 (3),
which implies that 2, < O (3). But #° is a maximal finite subgroup of O (3) (cf. Miller
1972), so 2, = P#°, completing the proof. O

Remark 2.5. Our version of Theorem 2.4 in the cubic case appears slightly more
general than that of Pitteri (1984) in that we reduce ¥ to the cubic group for any
bounded open A" satisfying (i)—(iii). This conclusion is strongly tied to the fact that
P° is a maximal finite subgroup of O(3). In the cubic-to-tetragonal case a
neighbourhood 4 satisfying (i)—(iii) can always be chosen to contain {#°}} by
adjoining to A, (defined by (2.17)) the set

NEUNEY NP,

where
def

def
NE={filfi i— AP < b, AP AP AP} = (e 8): 0 = p e, pe (@)}
and ¢ is sufficiently small. Here, | || is the norm introduced after (2.17) with g, = &;.
On the other hand, if 7, and 7, are sufficiently close to 1, a connected neighbourhood

of the form (2.17) with g, = & contains {#°e}.

We now admit that the lattice parameters do not remain fixed but change slightly
with temperature due to ordinary thermal expansion. To account for this fact, we
now require that &, &, and &, be functions of the temperature 6 /:

a(0), @ =a,0). @ =3dy0). (2.22)

x
Here [ = (0, 0c0) is an interval of relevant temperatures containing the transformation
temperature 6,. With this choice of lattice parameters, Proposition 2.3 holds for each
fel. Using (2.2) and (2.4) let {e}(0)} and {€3(0)} be sets of lattice vectors defined for

each €/ which have associated lattice parameters &(0), &,(), and &,(6). For later
reference we define for each e/

g3
2
R
-
2
?

2(0
7}

7(0) = s (0) = » M(0) = : (2.23)

R

~

c

In Theorem 2.4 we put g, = €(6,) and obtain a bounded open neighbourhood A
satisfying the conditions (i)~(iv) of Theorem 2.4. Let #¢ = 2(&%(6,)). Naturally, we
require that for each e/

(&(0)) = N, (2.24)

Remark 2.6. The assumption that the neighbourhood A7 is defined from the
lattice vectors € at the temperature 0, will lead, upon passage to the continuum
theory, to the interpretation of the reference configuration © as the undistorted
parent phase at 6,. Alternatively, it would be possible at this stage to define a tem-
perature-dependent neighbourhood from the lattice vectors {€(6)}. This would lead to
a continuum theory in which the reference configuration is temperature dependent.
For the purpose of enlarging the neighbourhood, this would seem to have no particular
advantage, and it would seem to have a definite disadvantage for possible
generalizations of the theory to motions with temperature fields.

Now we prescribe the free energy and make the transition from molecular to
continuum theory. We consider a free energy density ¢ € C°(A "¢ x [) of the form

B(G1: 925 93, 0)- (2.25)
Phil. Trans. R. Soc. Lond. A (1992)
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It is natural to assume that the dependence of ¢ on lattice vectors is such that any
two sets of lattice vectors that generate the same lattice give the same value of the
free energy and that the free energy of a lattice is equal to the free energy of any
orthogonal transformation of the lattice. That is, for each fe [, we assume

(A1) (uig;,0) = plg;, 0) whenever {g}e N, pe¥ and pulg;,e N, and
(A2)  $(Qg.,0) = $(g, 0) for all QeSO (3).

We assume without loss of generality that the high temperature phase is cubic and
the low temperature phase is tetragonal.

(A3) Foreach 08>0, 0l ¢(¢5(0),0) < ¢(g,,0)¥{g,}eNC.
(A4) For each 6 <0,, 6el, $(4(0),0) < ¢(g,,0)V{g, € N

Z

The existence of minimizers assumed in A3 and A4 implies the existence of other
minimizers by invariance. For 6 > 6,, A2 shows that {Qef(6)} is a minimizer of
@(-,0) for each Q€O (3). For 6 < 6, we get minimizers from A2 of the form {Qet},
@ €0 (3), and we get additional minimizers from A1l described in the next lemma.

Lemma 2.7. Let 0€ll be given and assume 9,(0) # 3,(0). The set of all triples of
vectors in (R*)® of the form

{1l Qe5(0)} (2.26)
with pe9, p[ N = N and Q€O (3) consists of all triples on the three disjoint orbits
{QU,E(0.)},{QU, @, &5(0,)},{QU, @, & (6.)}, Q€0 (3), (2.27)

where Q=e®e+e,®e;—e; ey, Q2=62®ez+el®e3—ea®el,} (2.28)
Uy = 1,(0) 1+ (15(0) = 1,(0)) €5 ® e,
and {e,, e,, €;} 18 an orthonormal basis with
= (2e5(0 ) ( o) —(0.))/&(0,),
= (41(0.) )/ a(0e),
and = (21(0:) +23(0.))/a(0,)-

Proof. First note that if ﬂ[ =N¢ tl_leany the definition of A"¢ and (iv) of
Theorem 2.4, 4] (6,) = Q&5(6,) for some Qe Z°. By Theorem 2.4 and the proof of
Proposition 2.3, the vectors of the form (2.26) can be expressed as

{QU, Q&5(6.)}, (2.29)
where €O (3), QeZ° and U, is given in (2.28). To find the distinct orbits we take
the inner product of (2.29) with itself to get

2%(0,) QU3 Q25 (0,), Qed*. (2.30)

The distinct matrices of the form (2.30) are given by the distinct linear
transformations of the form

QUEQ = i 1+ (3 —73) @y, ® Qe (2.31)

and there are only three distinet tensor products of the form @%e, ® @%e, with Q € 2°;
these are given by the elements 1, @, and @, which map e, to itself, e, to e, and e, to
e, respectively. O

Phil. Trans. R. Soc. Lond. A (1992)
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Remark 2.8. The three orbits in (2.27) are associated with wvariants of the
tetragonal phase. Their existence is consistent with the observation that upon
transformation the cubic unit cell can stretch in any of the three edge directions. In
this treatment the existence of three variants, etc., arises naturally out of
considerations of lattices and the neighbourhood 47¢. Each orbit in (2.27) actually
consists of two disjoint components due to the structure of O (3). The orthonormal
vectors {e;} given in Lemma 2.7 are commonly termed the cubic axes.

Having calculated the full set of minimizers delivered by invariance, we strengthen
the assumptions A3 and A4.

(A3*) For each 6 > 6, O€ [, the orbit {Qé$(6):Q €O (3)} is a strictly minimizing set
for ¢(-, 6) on A€

(A4%) Foreach 0 < 9 06 [, the three orbits given by (2.27) are strictly minimizing
orbits for ¢(-, 6) on A"

Remark 2.9. The existence of a smooth function ¢ satisfying A1, A2, A3" and A4*
is provided by an example of Ericksen (cf. Collins & Luskin 1989 ; Ericksen 1986). To
obtain the function ¢ from the function W(C, 6) given in these references, set

¢(ei» 0) = I/V((hZ ® k]) ei ’ ej’ 8)»

where {#’} are the reciprocal lattice vectors to {&}(6,)}, i.e. h*-&§(6,) = &.

These lattice calculations deliver a continuum theory when we adopt the
Cauchy—-Born rule (cf. Ericksen 1984) to relate atomic and macroscopic motion. To
describe this rule, we introduce a bounded open reference configuration 2 < R* and
consider deformations y:2-> R®. For the moment we proceed formally. The
Cauchy—Born rule states that a free energy density W:A4"¢ — R is defined for each
Oel by

W(F,0) = $(Fej(0.), O)laer r>os (2.32)
where we think of I as the replacement variable for Dy(x). With this form of the rule
we interpret the reference configuration €2 as the undistorted cubic phase at 8 = 6,
and A"¢ as the domain given by

def

= {AeGL* (3): (4eS(6,)) € N} (2.33)

Here, GL* (3) is the subset of GL(3) consisting of linear transformations with
positive determinant. Implicit in the use of the Born rule are the ideas of coarse-
graining and linearization ; that is, we assume that an accurate representation of the
total free energy can be obtained by summing the energy contributions from each
subregion of a partition of © into very small neighbourhoods, these being small
enough so that the deformation within each is essentially linear but large enough to
contain many lattice points.

The free energy density W immediately inherits properties from A1, A2, A3*, and
A47*. To describe these properties let U,(6), Uy(6), U,(0) be defined for each 6 ¢/ by

Uy(0) = 1,(0) 1+ (,(0) =1, (0)) e, ® €, (= Q@ Uy(0) Q7).
Uy(0) = 0, (0) 1+ (n2(0) —11(0)) e, ® €5 (= @, Uy(0) @), (2.34)

Uy(0) = 0,(0) L+ (15(0) —11(0)) e ® e (as in (2.28)),
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 3. Cubic to tetragonal transformation. Minimizing orbits for W(-,0,) satisfying (2.35) to
(2.38). The dashed lines summarize the rank-one connections between the variants under the
conditions 7, # %,. The orbit attached to 1 is no longer minimizing for 6 < @, while the orbits
attached to U, U,, and U, are no longer minimizing for ¢ > 6, and all orbits shift slightly with
temperature.

where ¢,, e, and e, have been defined in Lemma 2.7. For each 6 in / and each F in
NS, we have

def

Al W(FR,0) = W(F,0) foreach ReP°n SO (3) = 21D, (2.35)

A2 W(F,0)=W(U,0) where F = RU is the polar decomposition of F.
(2.36)
Also, recalling the definitions (2.23) and (2.34),

A3t < W(-,6) has strict minima on the orbit {5(6)SO (3)} for 6 > 6., (2.37)
A4t < W(-,0) has strict minima on the orbits
SO (3) U,(8) U SO (3) Uy(6) U SO (3) Uy(8) for 8 < 6,. (2.38)

The essential information for our calculations will be these minimizing orbits. For
later reference we summarize this information in figure 3 which shows the minimizing
orbits at 6 = 6,. At this point, ignore the dashed lines. Note that the orbit attached
to 1 is no longer minimizing for § < 6§, while the orbits attached to U,, U, and U, are
no longer minimizing for 8 > @,. Also, the orbits shift slightly with temperature (cf.
(2.34)) although the symmetry relations between them are maintained. Figures 3, 4,
and 5 are not intended to imply any particular geometric relations among the wells
(see James (1986) for some of this kind of geometric information).

The treatment of cubic to orthorhombic and orthorhombic to monoclinic
transformations is analogous to the treatment of cubic to tetragonal transformation
given above. Generally, we begin with a Bravais lattice £ (g,) having the point group
2" and transform to £ (Ug,) for some U = UT > 0 with an associated point group 22
We assume that {Ug,} € 4" where 4" is a neighbourhood of {g;} as given by Theorem
24, i.e.

(i) {9 e,
(il) A" is O (3) invariant: QA" = AV Q€O (3),
(iii) For each ue¥, u[N']= N or u[N] N N = ¢,
(iv) If me ¥ satisfies g[A"] = A", then jilg, = Qy, for some Qe P
Phil. Trans. R. Soc. Lond. A (1992)
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Let @ € 22, so that Q€O (3) and
QUg, = i, Ug, forsome pe%. (2.40)
y (2.39);; and (2.40), {##} Ug;} € A" ; hence, by (2.39);; and (2.39);,
WUg; = Upilg; = UQy, forsome QeP'. (2.41)

Jombining (2.40) and (2.41), we get UQ = QU = QU@ Q. By the uniqueness of the
polar decomposition, it follows that

U=QUQT YQes (2.42)
and also that @ = @, which yields

iii

P P (2.43)

Conversely, if QUQT U for some Qe 2", it follows by reversing the argument from
(2.40)—(2.42) that Qe 2% Hence the condition

(QeP . QUQ" = U}y = P? (2.44)

characterizes the set of positive symmetric matrices that give rise to the change of
symmetry 2! - 2% in A4". Note that elements of 2% and 2! with determinant — 1 are
irrelevant for (2.44) because ¢ occurs twice, so we confine attention to point groups
consisting of rotations only (Laue groups). Given the point group 2!, the Us in the
set (2.44) are precisely those which deliver the symmetry 2?2 for the lattice £ (Uy,).

For the following theorem, 2*» and 2®**?" denote two orthorhombic subgroups
of 432 where 2322 # RP*PRT for any R e P4 (P22 has axes consisting of three
face normals while 2*2?" has axes consisting of two face diagonals and one face
normal). Both 222 and 2*?" are representations of the abstract group 222 (see, for
example, Thurston (1974) for point group notation). Also, let 2¢¥2» < P43 phe g
tetragonal group (abstract point group 422) and let 2 < 22» be a monoclinic
group (abstract point group 2). 23 represents the group 432 as defined in (2.35)
with cubic axes {e;, e,, e,}.

Theorem 2.10. Let 2% = 2" be finite subgroups of SO (3) and let U2 be the set of all
positive symmetric transformations U in GL (3) such that

{Re P :RUR" = U} = 2. (2.45)
1) If Pt = PE32 P2 = PUE2) thep
U = g 1+ (g, — ) € @ € 1y > 0,9, > 0,9, # 7.}, (2.46)

where ey, s on the four-fold axis of P4?;
]f P = ga(432) P2 = P22 thon
%(432%»(222) ={ne, @e;+m,®ey+n3e, @ ey > 0,9, > 0,9, > 0,9, # 9y, 7y # 1,

N F st (247)
3) If PL = P P2 — P2 oy

gy as—~(222) _ {%q;i(ei+ej) ® (ei+ej) 2%( )® (e;—e;)+n,e, Qe m, >0, 7; >0,
Nk > 07771 '_# 771'}’ (248)

where e;+e;, e;—e; and e, are on the orthonormal two-fold axes of P,
Phil. Trans. R. Soc. Lond. A (1992)
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4) If P = P20 P = PO then

UPD=D = {9, 8, @ é;+1,6, ® Ey+ 5, @ 9, > 0,9, > 0,15 > 0,7, # 9y, (61,65, ;)

orthonormal, é, # +e,é, # te,}, (2.49)
where e, is on the two-fold axis of P®.

Proof. (1) Let U satisfy (2.45) with P! = PUD P2 = PA2) Then P12 js a
tetragonal group which has a four-fold axis e,, where & is either 1, 2 or 3. Let R,
denote a 90° rotation about this axis. Then (R,))?» URT? =U for p=1,2,3.
Operating this equation on ¢, shows that e, is an eigenvector of U. If e L ¢, is another
eigenvector then we also see that (RT)? e is an eigenvector with the same eigenvalue
as e. Since U is not a multiple of the identity (otherwise the left-hand side of (2.45)
would equal 2243?) it follows that the plane normal to e, is a maximal eigenspace of

. 50 that U=+ 0= 1) e ® (2.50)
with 9, >0, 9, > 0, 5; # 7.

(2) The proof is strictly analogous to (1).

(3) The eigenvectors of any U in the set ##?~(2" follow from (2.45) and the
definition of 222¥", Clearly 7, # 7, for otherwise (2.48) would have the form (2.46).

If #9,,7,,7; are distinct, then the study of (2.45) easily reduces to a study of 180°
rotations and then (2.48) follows easily. However, even if 9, = 5, or 5, = 5, any

R e P43 with RU@2D BT _ 222y (2.51)

leaves the {J3 (e, +e,), e;}-eigenspace or the {5 (e; —e¢,), e5}-eigenspace invariant, and
the only such R in 2% are R = —1+ (e, +¢,) ® (e, 1 ¢,), R =—1+42¢, @ e,.

(4) Without loss of generality we can take 2 = {—1+2¢, ® ¢,, 1} in which case
any U in #@*®>® has the form 7,¢é, ® é,+ 7,6, ® é,+7;¢, ® e,. Necessary and
sufficient conditions that R, URT # U and R,URT # U, with R, = —1+42¢, ®e,,
R, =—1+2¢,® e, are that 9, # 5, and é, # te,, €, # te,. O

Remark 2.11. Theorem 2.10 shows that any cubic to tetragonal transformation in
Bravais lattices, e.g. simple cubic to simple tetragonal or body-centred cubic (Bcc)
to tetragonal (BcT), gives rise to essentially the same energy-well structure, whereas
there are two distinct energy-well structures for cubic to orthorhombic trans-
formation. One of these is produced by stretches along the cubic axes, whereas the
other is produced by a stretch along a cubic axis and stretches along a pair of face
diagonals perpendicular to this axis.

The various energy-well structures can be deduced directly from Theorem 2.10 if
we introduce assumptions analogous to A1, A2, A3*, and A4*. We do not present the
details. Of particular interest is the number of variants (i.e. the number of distinct
minimizing orbits for 6 < 6,) and the rank-one connections between variants. The
number of variants is the number of distinct matrices of the form RURT where
Ue'? and Re 2, in the notation of Theorem 2.10. The result of this calculation
is as follows.

(i) Cubic to tetragonal
PUD = PUD 3 variants.
(ii) Cubic to orthorhombic
P22 < PUY) . § variants;
PR <« PU) 6 variants.

Phil. Trans. R. Soc. Lond. A (1992)
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222)

Figure 4. Cubic to orthorhombic transformations: (a) 243 — 220 (b ) P > 2@ Minimizing
orbits for the free energy density at 6 = 6,. The dashed lines summarize the rank-one connections
between variants. The orbit attached to 1 is no longer minimizing for 6 < @, while the other orbits

are no longer minimizing for 6 > 6, and all orbits shift slightly with temperature. U®?2 and U???’
are members of #4322 gnd U322 regpectively.

O

1

—R

Figure 5. Orthorhombic to monoclinic transformation. Minimizing orbits for the free energy
density at @ = 6,. The dashed lines summarize the rank-one connections between variants. The
orbit attached to 1 is no longer minimizing for & < 6, while the other orbits are no longer minimizing
for 6 > 6., and all orbits shift slightly with temperature. U® e % 22»~>®,

(iii) Orthorhombic to monoclinic
PO < PI 2 variants.

This result on the number of variants can also be proved from general properties of
groups (see van Tendeloo & Amelinckx 1974) and is given by the formula (order of
PY)/(order of #*). A summary of properties of energy functions for cubic to
orthorhombic and orthorhombic to monoclinic transformations is given in figures 4
and 5.

Of particular importance for our calculations are pairs of matrices on the
minimizing orbits that differ by a matrix of rank one. To shorten the description, we
call each of the connected minimizing orbits a well. Each well has the form

{(RU:ReS0 (3)}, (2.52)

where U = U™ > 0 is a fixed matrix which minimizes the free energy density W(-,#)
at some given temperature 6. A rank-one connection shall denote a pair of matrices
A # B on wells which satisfy
B—A4A=a®mn (2.53)
for some vectors a e R?, ne R3.
We first observe that there are no rank-one connections between a well and itself,
for the equation
RU-U=a®mn, ReSO(3), (2.54)

Phil. Trans. R. Soc. Lond. A (1992)
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implies that R=1+a®n’, n =U"Tn, (2.55)

and the only rotation having two non-parallel axes (L to »’) is 1. To find the rank-
one connections between different wells we need to solve an equation of the form

RU,—RU, = a®n, (2.56)

where U, = Uf >0, U, = Uf >0, ReSO(3), ReSO(3), acR®, ne R®. After pre-
multiplication of (2.56) by RT and postmultiplication by U;!, we get the equivalent
form

RU, U =14+bQ@m, (2.57)

where m = U'n, b = R"a, R = R"Re SO0 (3). By the polar decomposition theorem,
(2.57) is equivalent to the statement

O=(14+m@b)(1+b®@m), 1+b-m>0, (2.58)
where C=U'U3U. (2.59)

So the problem of finding rank-one connections is equivalent to finding solutions
be 3, me R of (2.58) with C given.

Proposition 2.12 (Ball & James 1987 ; see also Khachaturyan 1983). Necessary and
sufficient conditions for a symmetric 3 x 3 matrix C # 1 with eigenvalues A, < A, < A,
to be expressible in the form

C=1+m®@Db)(1+b®m)
with14+bm > 0and b # 0, m # 0arethat A, > 0 (t.e. C > 0) and A, = 1. The solutions

are gwen by
A (1—A, Ay(Ay—1
ol SO B
_ (VA= VA
e (vm —1)

where p # 0 s a constant and e, e, are normalized eigenvectors of C corresponding to A,,
A, respectively, and where k can take the values +1.

)( VL= e kv Ry —1)ey),

Remarks 2.13.

1. Khachaturyan (1983) only gives the solution corresponding to « = —1; the
solution with x = 4+ 1 corresponds to changing the sign of e,.

2. Note that from (2.59) U, # U, if and only if C # 1. It thus follows from
Proposition 2.12 that given any matrix 4 on one well, there are precisely zero, one
or two rank-one connections between 4 and another given well. The case of precisely
one rank-one connection between 4 €SO (3)U; and SO (3) U, occurs when 1 is a
double eigenvalue of C, that is if and only if the positive symmetric matrices U, and
U, satisfy

Us=U240U,e® Uye, (2.60)
where |e] =1 and 6 > —1, § # 0. We say that two wells are non-trivially rank-one
connected if they are rank-one connected and (2.60) does not hold. If U, and U, are

associated with variants, so that U, = RU, R for some R eSO (3), then taking the
trace of (2.60) shows that this equation cannot hold. Thus in the case of two variants

Phil. Trans. R. Soc. Lond. A (1992)
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there are either zero or two rank-one connections. A pair of rank-one connections
(U, RU,) and (U,,RU,), R # R, between variants is referred to as a pair of reciprocal
twins.

We have calculated all the rank-one connections between variant wells under
precisely the conditions on lattice parameters given in Theorem 2.10. The results are
summarized by the dashed lines shown in figures 3, 4, 5. For cubic to tetragonal
transformations, each matrix on a variant well has exactly two distinct rank-one
connections to each of the other variant wells. For cubic to orthorhombic
transformations, we get very different sets of rank-one connections depending on
which orthorhombic group we choose; for 243 — 22 e get, a pair of rank-one
connections from a matrix on one variant well to only three of the other five wells,
whereas for 243 . 2222 we get such connections to each of the other variant wells.
For orthorhombic to monoclinic transformations, each matrix on a variant well has
exactly two distinct rank-one connections to the other variant well. In terms of the
results calculated so far, there is no difference between the energy-well structures
arising from the two possible orthorhombic groups in orthorhombic to monoclinic
transformations. These results apply for each 6 e/ with 6 < 6,.. We note the obvious
great difference in behaviour expected for the two cubic to orthorhombic
transformations.

Remark 2.14. There is an alternative way of defining variants that is used in
studies of microstructure (cf. Baele et al. 1987; Nishiyama 1978). A variant in this
sense is defined to be the equivalence class of ordered pairs of matrices (R4, RB),
R eSO (3), with the property that A and B are rank-one connected and lie on distinct
wells. Here, the equivalence relation is (4,B) ~ (C, D) if there is an R eSO (3) such
that A = RC and B = RD. This definition corresponds to pictures of pairwise twinned
configurations that one can draw. In the cubic to tetragonal case, this definition gives
four variants per well, each corresponding with one cubic (110) plane not parallel to
the direction of elongation associated to the given well. More generally, it is easily
seen that this definition gives four variants for each pair of wells that are nontrivially
rank-one connected (see Remark 2.13),). Assuming there are no rank-one connections
to the parent well, this definition gives the count:

(i) LU . PU) . {9 variants;
(i) P4 P2 32 variants;
(iii) PUsY . P2V’ 6() variants;
(iv) 2V 2. 4 variants.

At 0 = 0,, we can ask if the parent well (i.e. the well containing 1) has any rank-
one connections to any of the variant wells. From Proposition 2.12 there are such
connections for the various transformations if and only if U,, U**?" and U® have
their middle eigenvalues equal to 1. Conditions of this type are rarely satisfied by
measured lattice parameters. An exception is the TiTa alloy studied by Bywater &
Christian (1971). In fact, they adjusted the composition of the alloy (the proportion
of Ta) to force the middle eigenvalue equal to 1. We note that the properties of the
free energy functions, including the matrices U,, U®??’, etc., which describe the wells,
change with composition.

The existence of a rank-one connection between matrices 4 and B means that
Hadamard’s kinematic conditions of compatibility can be satisfied for a pairwise
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linear, continuous deformation having the gradients 4 and B. In §4 we show that
such deformations are deformations of minimum total energy for a free crystal. The
calculation of » in (2.56) in the various cases gives the finite number of orientations
possible for planes which can be planes of discontinuity in these minimizers. In table
1 we list various measured data for transformations of the types cubic to tetragonal,
cubic to orthorhombic and orthorhombic to monoclinic. In each case the observed
planes of discontinuity (twin planes) under free transformation are given in column
6. In every case these are the same planes as delivered by the calculation (2.56).

Several of the alloys listed in table 1 cannot be strictly treated as Bravais lattices.
In these cases, the transformation data were obtained by assuming that the present
theory refers to a skeletal Bravais lattice that does not contain all the atoms of the
alloy. For further discussion of the description of shuffling relative to the skeletal
lattice see Bhattacharya (1991), James (1987) and Pitteri (1985).

Two final remarks on table 1. The first is that in several cases we were unable to
find measurements of lattice parameters of the parent phase at 6,. In these cases we
adopted as reference configuration (cf. (2.32) ff.) the undistorted configuration of the
parent phase at 0,0, listed in column 4. With this understanding, the values of 7,,
79> Ny, U® are appropriate to the temperature 6 = 0,,,,sormeq- Second, we were unable
to locate any materials that undergo the transformation 2*3 — 222,

3. Summary of results on Young measures and weak continuity

In this section we collect together results on Young measures and weakly
continuous functions that will be the main tools for the arguments in §§4 and 5.

As general references we cite Adams (1975) and Brezis (1987) for basic information
on weak convergence and Sobolev spaces, and Dacorogna (1989), Evans (1990) and
Tartar (1974, 1978) for discussions of nonlinear weakly continuous functions and
Young measures.

If E = R™is measurable and 1 < p < o we denote by L?(E; R°) the Banach space
of mappings z: £ — R® with finite norm |z| 5 ,, where

1/p
det (J Izlpdx) if 1<p<oo,
= E (3.1)

Izl g,
esssup |2| if p=o0.
E

We write L?(E) = L?(E; R).
A sequence 2P e LP(E; R®) converges weakly to z in LP(E; R®) (weak * if p = 00)
provided ze L?(E; B*) and

Jz‘”-gﬁdx»[ 2 pde as j>o0 (3.2)
E E

for every ¢eL”(E;R?), where p*+p'~* = 1. Equivalently, sup; [2”] 5 , < oo and
the averages of 2 converge, i.e.

Jz(”dx»J zdx as j—>o0 (3.3)
2 9

*
for every measurable 2 < E. We write — (resp. —) to denote weak (resp. weak*)
convergence.
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def

Let Q = R® be open and bounded. If A, BeM®® we write A-B=tr (ATB),
|4] = (4-A):. We denote by W?(Q;R®), 1 < p < o, the usual Sobolev space of
mappings y:2 - R® having finite norm |y|, ,, where

1/p
(J |y|p+IDy}de) if 1<p<oo,

Iyl = (3.4)

esssup (ly|+|Dyl) if p=o0.
Q

A sequence y e W ?(Q; R?) converges weakly to y in W ?(2; R®?) (weak *if p = c0)
provided ye W*?(Q; B3) and

y P —yin LP(Q2; R®) and Dy? —Dyin L?(Q; R®) (3.5)

asj— oo (weak *if p = 00). If 1 < p < 00 and y? e W"?(2; R®) is a bounded sequence
(i.e. sup; [y, , < o0) then there exists a subsequence y'”> such that y"’—y in
Wb ?(Q; R?) for some y (weak * if p = c0). In particular, from (3.5) we have that Dy
converges to Dy weakly or weak * in L?(Q; R®).

The fundamental theorem on Young measures implies that a family of measures
(v,)zeo can be assigned to a further subsequence, again denoted y’, of 3, which
characterizes the local limiting distribution of values of Dy’ as j'— oo, and
determines the weak limit of g(Dy”) for all continuous functions g:M**®— R. A
convenient version of the theorem can be found in Ball (1989), to which the reader
is referred for further details and references. To apply the theorem we set n = 3,
s =9 and think of the sequence F?:.Q->[R® as representing the sequence of
gradients Dy,

Theorem 3.1 (Ball 1989). Let Q2 = R"™ be bounded and Lebesgue measurable, let
K < R* be closed and let F9.Q— R*, j = 1,2, ..., be a sequence of Lebesgue measurable
functions satisfying for any open set U containing K

lim meas{xe Q:FP(x)¢ U} = 0. (3.6)

j>oo

Then there exist a subsequence FO) of F and a family (v,), x€Q, of positive measures
on R*, depending measurably on x, such that

(i) L@’d]}x < 1forae. xef,
(i), suppv, < K for a.e. x€Q, and
(iii) g(F Dz —*f ) in L®()
for each continuous function g: R*— R satisfying
lim g(F) = 0. (3.7)
|Fl>0

Suppose further than the sequence FY) satisfies the boundedness condition
supf R(F9))dx < o0 (3.8)
v Ja
Phil. Trans. R. Soc. Lond. A (1992)
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410 J. M. Ball and R. D. James

Sfor some continuous nondecreasing function h:[0, co]— R with lim,  h(t) = co. Then
equality holds in (i) (so that each v, is a probability measure) and given any measurable
subset E of Q2

g(F”'))—\J g(F) dv,(F) in L'(E) (3.9)
RS
for any continuous function g: R*— R such that g(F) is sequentially weakly relatively
compact in LY(E).

Remark 3.2. 1t is part of the conclusion of the theorem that in (3.9) the function

def
Gut) = | oE)an,p)
RS
is well-defined (i.e. g is integrable with respect to »,) for a.e. z, and that {v,,g>€
LY(E).
In analysing the Young measure we use repeatedly two elementary facts

Lemma 3.3. Let v be a positive measure on [R®.
(i) Let & = R* and fe C°(R*; R) with f = 0 and

(@) =0eGes. (3.10)

Then Lxﬁf(G) dv(G) = 0<=suppv < &. (3.11)

(ii) Let suppv < Ul_, % where the &' are closed and disjoint. Then there exist
positive measures V', i = 1,...,1, such that suppv' = ¥, i=1,...,1, and

v = }l] Ve, (3.12)

-
I

1

Proof of Lemma 3.3. Since v is a positive measure on R®, supp v is the complement
of the largest open set £ with v(F) = 0. & is closed since it is the minimizing set of
a continuous function. Thus if suppv = &, v(R*\&) = 0 and so

f(@) dv(@) =j f(@)dv(G) =0, (3.13)
R* 4

proving (<=).
To prove (=) note that

0= f S(G)dv(G) = f(G)dv(@) = (minf)f dv (3.14)
R RN\& K K
for any compact subset K of R*\.%. But since v is regular
V(RN\S) = sup{v(K):. K < R\, K compact}, (3.15)
and the right-hand side of (3.15) is zero by (3.14).
Part (2) is proved by defining
Vi) =vE NS, i=1,..,1 (3.16)
for any Borel set £, and then using properties of the restriction of a measure. []

We now combine Theorem 3.1 with the weak continuity of minors of Dy. For
general information on weak continuity and proofs of the weak continuity of minors
see Morrey (1966), Reshetnyak (1967), Ball (1977), and Ball et al. (1981).
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Proposition 3.4. Let Q < R3 be bounded and open, and let p = 2, q = p/(p—1). Let
y P —y in WHP(Q; R®) and suppose further that cof Dy? is bounded in L(2;M>*®),
where cof A denotes the matrixz of cofactors of A. Let (v,),.o be the Young measure
assoctated with a subsequence of Dy, i.e. the measure delivered by Theorem 3.1. Then

cof Dy(x) = J cofAdv,(4), (3.17)
M3><3

det Dy(x) = f det 4 dv,(4), (3.18)
M3>(3

for ae xeQ.

Proof. By the cited results on the weak continuity of minors,
cof Dy? — cof Dy, det Dy'? — det Dy (3.19)

in the sense of distributions.
Since ¢ > 1 it follows that

cof Dy —~cof Dy, in L%Q;M>®), (3.20)

so that (3.17) is a consequence of Theorem 3.1 (see (3.9)). We obtain (3.18) in the
same way, provided it can be shown that det Dy is bounded in L"() for some
r > 1. This holds trivially if p > 3, and also if 2 < p < 3, since then ¢ > 2 and

|det Dy | = |det (cof Dy?)[F < const. [cof Dy@[:. (3.21)

(The last remark is due to M. Esteban (personal communication).) If p=3,¢=%a
more subtle argument is needed to prove (3.18). Let ¥ be the subsequence of y?
in the statement of the proposition. Then det Dy‘? is a bounded sequence in L(£2),
so that by the Chacon biting lemma (Brooks & Chacon 1980; Ball & Murat 1989)
there is a further subsequence, again denoted y'?, a function JeLQ), and a
decreasing sequence £, of measurable subsets of € satisfying lim,_  meas¥, =0,
such that as j'— o0,

det Dy’ —J in LYQ\E,) foreach k. (3.22)
So by (3.9) with B = Q\E,

—>00

J(x) = f detAdv,(4) a.e.xeQ. (3.23)
M3><3

But Zhang (1991) has shown that J(x) = det Dy(x) a.e. x€ £ (see also Ball & Zhang
1990), so that (3.18) follows. O

Remark 3.5. We will use Proposition 3.4 for sequences y satisfying det Dy > 0
a.e. For such sequences an alternative way of treating the case p = 3 is via the
remarkable result of Miiller (1989) to the effect that det Dy'” In (det Dy?) is then
bounded in L*(K) for each compact subset K < Q.

The relations (3.17), (3.18) furnish necessary conditions for a family (v,),.o of
probability measures on M**3 to be the Young measure corresponding to a sequence
of gradients. Since by Theorem 3.1

Dy(z) = f Adv,(4), ae. xe, (3.24)
M3><3

Phil. Trans. R. Soc. Lond. A (1992)
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412 J. M. Ball and R. D. James
these necessary conditions can be written in the form
vy, cofA) = cof (v, A),{v,,det A) = det (v, 4) a.e. xz€Q, (3.25)

where we use the notation in Remark 3.2. Even in the case when v, is independent
of xe 2, the conditions (3.25) are not sufficient for (v,),.o to arise from a sequence of
gradients. To see this, consider the special case when v, is a convex combination of

Dirac masses: Ve = A 0p + 4,00 4+ 4+ 4,0, (3.26)

where 27_ A, =1, A, =20 for i=1,...,7, and F,, ..., F. are constant 3 x 3 matrices.
Then the relations (3.25) become

F=MNF+AF+.. . +AF,
cof F' = A, cof F, + A, cof F, 4 ... + A, cof F,, (3.27)
det F' = A det F, + A, det F,+... + A, det F,,

where F= f G dv,(G).
M3><3

Let @ : M?*® - Rbe quadratic, quasiconvex but not polyconvex. (See Ball (1977) for
the definitions of quasiconvexity and polyconvexity.) Such functions @ exist and it
is easily shown that

O(F) = max (Q(F), —1)

is also quasiconvex but not polyconvex (Terpstra 1938; Serre 1983; see also Ball
1985). Since 6 is bounded below and not polyconvex, there exist (see Ball 1977,
Theorem 4.4) non-negative scalars A, ..., A,, ’_; A, = 1, and constant 3 X 3 matrices
F,,...,F, F such that the relations (3.27) are satisfied but

OF) > 3 A, 0(F)). (3.28)
i=1
For these A;, F; suppose there existed a sequence € W*%(Q; R*) such that y@ —y
in W2(Q; R?) for some p > 2 and such that Dy had the associated Young measure
(3.26). Then by (3.24), Dy(x) = F a.e. But since 6 is quadratic and quasiconvex,
F (2) = [ 0(Dz(x)) dx is sequentially weakly lower semicontinuous in W"2(Q; &),
so that

f OF)dx = f O(Dy(x)) de < lim | 8(Dy?)dz
e Q

j—oo J Q2
= f J 0(Q) dv,(G) dx
Q M3><3
,

= | X A0(F)de. (3.29)

After cancelling the integrals we get e

,

O(F) < X A, 0(F,), (3.30)

i=1

contradicting (3.28).
The above remark is important because it shows that the arguments based on
(3.25) that are used later in this paper do not fully exploit the information on the
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Young measure coming from the fact that Dy? is a gradient. In this connection, we
mention the recent result of Kinderlehrer & Pedregal (1991a—d) to the effect that
if Q = R™ is open and if v, = v is a positive measure on M™*” which is independent
of z, has suppv = K for some compact subset K < M™ " and satisfies

2
=
n

f 0(G)dv,(G) fora.e xef, (3.31)
Mm)(n

where F = f G dv,(G), (3.32)
men

for every quasiconvex 6:M™*" - R, then v, is the Young measure corresponding to

*
Dy for some sequence y? —y in W *(Q; R™) (thus Dy(x) = F a.e.). See Firoozye
(1990) and Bhattacharya et al. (1991) for additional algebraic restrictions on
microstructure that follow from (3.31).

4. Energy minimization and Young measures

As in §2, we consider deformations y:2-> R*® of a bounded open reference
configuration Q < R®. For the rest of the paper we make the standing assumption
that @ is connected and has a strongly Lipschitz boundary 0Q2. We consider a free
energy density W: M**®—~ R U {+ oo} satisfying the following hypotheses.

H1 (domain and continuity).

dom W = {4eM>3: W) < oo} 4.1)
is an open subset of M3*® on which W is continuous.

H2 (growth for large |4]). There exist constants p>=2, ¢ = p/(p—1), ¢; >0,
¢, > 0 and ¢, such that

W(A) = ¢,|A[P+cylcof A|?+¢, forall AeM>3. (4.2)
H3 (frame indifference). W is invariant to the left action of SO (3), i.e.
W(QA) = W(A) forall QeSO (3), AeM>3. (4.3)

H4 (existence of a potential well). There exist a compact subset K of dom W and
an ¢, > 0 such that
W) = inf W+e, forall A¢K. (4.4)

M3><3

We consider the problem of minimizing the total free energy

I(y) = JQ W(Dy()) d= (4.5)

for ye o/, where & is a given subset of
def

& ={yeWHHQ; R®):ylw, = 7} (4.6)

In (4.6), 0Q, denotes a subset of 02 measurable with respect to two-dimensional
Hausdorff measure, 7:00Q, -~ R® is a given measurable mapping, and the boundary
values are understood in the sense of trace. We suppose that o is weakly closed,
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in the sense that if y?Peo/ for j=1,2,..., if y?—y in WHY(Q, R®) and if
sup;I(y"?) < oo, then ye.o/. We do not assume that o/ = & so as to allow for ad-
ditional constraints such as invertibility. For example, we may use the formulation
of invertibility for mixed boundary-value problems proposed by Ciarlet & Necas
(1987), and define

o = {yeé":j det Dy(x) dx = meas y(Q)}. 4.7)
o

By using ideas of Sverdk (1988), Qi (1988) has shown that if p > 2 then »(Q) may be
defined for any ye & with I(y) < 00, and that with this definition & is weakly closed.
We will pay particular attention to the special case when &/ = of ,, where

def

A p={ye W1 (Q; R®):yl,, = Fa} (4.8)

and Fedom W is constant. The minimization problem (4.5), (4.6) is appropriate for
a body maintained at some constant temperature 6. The function W = W(4) is thus
to be thought of as arising from a free energy function W = W(4,0) by setting
0 = const.

The hypotheses H1-H4 are framed so as to cover the following two cases.

(i) W:MP*® > R U {+ oo} continuous (with respect to the usual topology on R) with
dom W = M3*® Then H1 holds, and it follows from H2 both that H4 holds and that
W(A)— oo as det 4 -0+

.. — .
(ii) W(d) = {W(A,B), Aee/VJr', (4.9)
+ o0, otherwise,

where W is given by (2.27), @€ [ is constant, and .A"¢ is defined by (2.33). We make
the usual identification of GL* (3) with M®*®. (If A°¢ is also bounded then H2 is
automatically satisfied.) In this case minimizing [ in &7 is equivalent to minimizing

I(y) Z L W(Dy(), 0) dx (4.10)

for y e o subject to the constraint
Dy(x)ye /S, a.e. xef. (4.11)

To render the minimization problem (4.5), (4.6) more tractable, we study a very
special case which effectively reduces the problem to that of minimizing the
integrand. To describe this we first note that by adding a suitable constant to W we
may suppose that

H5 inf W=0. (4.12)

M3X3

Note that H1, H4 imply that the infimum in (4.12) is attained.
Let M={4eM*>3:WA) = 0}. (4.13)

Then M is a non-empty, compact subset of M3 which, by H3, is invariant to the left
action of SO (3), i.e.
SO (3)M = M. (4.14)
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The special case we study is when & is such that

infl = 0. (4.15)
o

Of course (4.15) is satisfied if 002, is empty, or more generally if the affine mapping
x> Ax+a belongs to o7 for some A€M and ae R®, since then

0=1(4dx+a) = infl > 0. (4.16)
A p
Less trivially, we will discuss examples in which ¥ ¢M but
inf/ = 0. (4.17)
Ay

Suppose now that inf I < oo (but not necessarily that (4.15) holds), and let y? be
a minimizing sequence for I in /. By H2

supJ (IDy P12 + |cof Dy D)%) dz < o0. (4.18)
i Je
Let (v,),.0 denote the Young measure corresponding to an appropriate subsequence
of the Dy again denoted Dy, furnished by Theorem 3.1. Comparing (3.8) and
(4.18) we see that the v, are probability measures on M**3. We may also suppose
without loss of generality that

y D —yin WH?(Q; R?) (4.19)

for some y€ &. In the case when 0Q, has positive two-dimensional Hausdorff measure
this follows from the Poincaré inequality

V4
J |y‘j>|pdx<const.( f y‘j)dS‘ +J |D?/(j)|pdx): (4.20)
Q 02 Q

(cf. Morrey 1966, p. 82), which implies that ' is bounded in W' ?(Q2; R&®). In the case
when 00, has zero two-dimensional measure we can replace y by

YO = y""—(volQ)‘lf ¥ da.
Q

Then DYY = Dy, and the Poincaré inequality

f Y|P da < eonst.f IDYO? du, (4.21)
fo) Q

implies that Y is bounded in W' ?(2; &®). Finally, since .« is weakly closed we have
yeA.

Proposition 4.1. Let y? be a minimizing sequence for I in oZ, and let (v,),.q be the
Young measure corresponding to Dy?. Then if inf ,I =0,

suppv, <M fora.e. xeQ. (4.22)
Proof. Define f: M**® - R by
f(4) = min (W(4),€,), (4.23)
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where ¢, is given in H4. Since by H1 W is continuous on dom W, f is continuous on
dom W. But by H4, f(4) = ¢, for A ¢ K. Hence f is bounded and continuous on 3>,
By Theorem 3.1,

FOy | fA)dnd) in L2(@), (4.24)
M3X3
so that lim | f(Dy?)dz =J f(d)dv,(4)dx. (4.25)
j>o0 JQ QJ e
But by assumption
0=1lim | WDy?P)dx = lim | f(Dy?)dz. (4.26)
j>o v Q2 jooo J Q2

Since f = 0 it follows from (4.25), (4.26) that

flA)dv, (A) =0 a.e.xeQ. (4.27)

M3>(3
But f(4) = 0 if and only if 4 eM. The result thus follows from Lemma 3.3(1). []

Remark 4.2. Let y? € o/ be bounded in W (2; &%), let Dy” have corresponding
Young measure (v,),.q, and suppose that (4.22) holds. Then even if Dy (x) edom W
for a.e. x€Q, it does not in general follow that y is a minimizing sequence (since
Dy (x) could approach the boundary of dom W as j—> o0, on a set of vanishingly
small measure, in such a way that I(y?) > c0). However, if we suppose in addition
that Dy?(x) belongs for all j and a.e. e Q2 to a compact subset K, of dom W, then it
follows from (4.23) that inf ;I = 0 and that ¥ is a minimizing sequence. To prove
this, let g:M***— R be a bounded continuous function with g|, = W|,. Then

lim I(y?) = lim | ¢g(Dy?)dx = f j g(Ad)dv,(A4)dz = 0, (4.28)
Q 0 M3>(3

J>o J>o0

as required.

In view of (4.14), M is a union of orbits under the left action of SO (3). The simplest
situation to consider is when M consists of just one such orbit, i.e.

M=80(3)4,, (4.29)

where 4, e M3*® is given. We call the corresponding problem of analysing (4.15) the
one-well problem. The solution is given by

Theorem 4.3. Assume (4.29) holds. Then inf ,I = 0 if and only if the affine mapping
Ya,a 0> Ax+a belongs to o for some A€M and ae R®. In this case, every minimizing
sequence Yy has a subsequence y'7) such that

Dy > A strongly in L"(Q) for 1<r<p, (4.30)
for some AeM.

Proof. We combine arguments of James & Kinderlehrer (1989) and Reshetnyak
(1967) (see also Ball 1990). Making a linear change of variables we may suppose
without loss of generality that 4, = 1. Let inf , 7 = 0, and let ¥ be a minimizing
sequence, so that I(y?) ~0. We may suppose as before that y? —y in Wh?(Q; R?)
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for some ye ./, and that Dy‘? has Young measure (v,),.o, where, by Proposition 4.1,
suppv, = SO (3) a.e. From (4.18) and Proposition 3.4 we see that for a.e. xeQ,

det Dy(x) = J det Rdv,(R) =1, (4.31)
S0 (3)
cof Dy(x) = J cof Rdv,(R) = J Rdv,(R) = Dy(x). (4.32)
S0 (3) S0 (3)

Hence Dy(x)eSO0 (3) a.e., so that by Reshetnyak (1967) y(x) = Rx+a for some
ReS0 (3) and ae R, Also, since Dy(x) = R,

J |IR—R|*dv,(R) = J |R|?dv,(R)—|R|>=3—3 =0, (4.33)
S0 (3) S0 (3)
so that by Lemma 3.3 (i)
v, =0z a.e. xeld. (4.34)
Taking g(#) = |F|" in (3.9) we deduce easily that
Dy'" >R stronglyin L7(2) for 1<r<p, (4.35)
completing the proof. |

Theorem 4.3 shows that no microstructure can occur tn the one-well problem.
We conclude this section with a useful remark, following Ball & Murat (1984) (see
also Ball 1986).

Theorem 4.4. There exists a minimizing sequence y'? for I in of p satisfying
y D —~Fzx in WhHP(Q; R?). (4.36)

Proof. Let 4 be any minimizing sequence. Given j, by Vitali’s covering theorem
we may write £ as a disjoint union

Q=U(a+eP Q) u NO, (4.37)
A

where a{? e B3, 0 < €? < j7 and meas N = 0. Define
yP(x) = Fal + e 5D (x—a{?)/e?) for zeal+e? Q. (4.38)
Thus 7 is rescaled onto each of the open sets a{” +¢{” Q in such a way that

YPloaip e o) = F. It is not hard to prove (cf. Ball & Murat 1984) that y e o/,
Iy = I(5?), and that y? —Fx in W?(Q; R®), as required. O

5. The two-well problem: necessary conditions for the macroscopic
deformation gradient

We now begin the analysis of the two-well problem. In this case M ={de
M3 W(A) = 0} consists of precisely two distinct orbits. Let these orbits be SO (3) 4,,
SO (3)4,, where A,,4,eM33. Then SO (3)4,=80(3)U,;, SO(3)4,=3S0(3)U,,
where U, = (AT 4,)%, so that the assumption can be written

M =80(@3)U, USO(3)U,, (5.1)
where U, = UT > 0, U, = Uy > 0 are distinct 3 x 3 matrices. Depending on U,, U,, the
set M may or may not have rank-one connections (i.e. contain two matrices differing
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by a matrix of rank one). Since each rank-one connection corresponds to a possible
interface, it is natural to conjecture that if M has no rank-one connections and if
supp v, < M a.e., where (v,), .o is the Young measure corresponding to Dy? for some
sequence y? —y in Wh?(Q; R?) satisfying (4.19), then v, = 8p, ) a.e. This has been
established in some special cases (Ball 1990; Matos 1990a, b; Sverdk 1991 a, b) and
by Kinderlehrer & Pedregal (1991a-d) and Bhattacharya et al. (1991) in the
corresponding two-dimensional setting, but the general question is still open. (On
account of the counterexamples in Ball (1990), some special features of M other than
the lack of rank-one connections would need to be used.) Since we wish to model
microstructure with interfaces we will suppose that M has a rank-one connection :

RU,—U,=a®mn, (5.2)
for some ReSO (3) and non-zero a,ne€ R*. We further assume that
det U, = det U,,. (5.3)

The conditions (5.2), (5.3) are satisfied by any pair of variant wells described in §2,
and, in particular, by the monoclinic variants. In §7 we show how for cubic to
tetragonal transformations the case of three variant wells can be reduced to the two-
well case by restricting the boundary conditions.

Under the assumptions (5.1)-(5.3) we can simplify the description of the wells via
a linear change of variables. For any z:Q — R? define

y(x) = z(Lx), (5.4)
where L=U"1-08e;®e¢€,), e;=a/lal,
e, =Ur'n/|U'nl, 8 =glal|U*nl.

Note that by (5.2), (5.3) we have e, e, = 0. Let {e,, ¢,, €5} be an orthonormal basis of
R?. Then Dz(Lx)eM if and only if Dy(x) eSO (3)ST U SO (3)S~, where
St =140, ®e¢, S =1-0e,Q¢, 0>0. (5.6)

Under the change of variables (5.4), minimizing sequences, minimizers, Young
measures, etc., get transformed by the obvious rules. We do not bother to rename
sequences, the domain €, etc., but simply assume without loss of generality that

M =180(3)8" U SO (3)S, (5.7)

(5.5)

with S* given by (5.6).

For M as in (5.7) we now establish necessary conditions on Dy in order that
Yy —yin W-?(Q; R®) for some sequence ' satisfying (4.18) and supp v, = M a.e. By
Proposition 4.1 these necessary conditions are satisfied in the case inf ,/ = 0 by the
weak limit of any minimizing sequence. The necessary conditions will later be shown
to be sufficient provided y is sufficiently smooth and dom W sufficiently large (see §6).

Let R denote the set of symmetric 3 x 3 matrices of the form

Oll 0 013
oc=lo 1 o (5.8)
013 O CY33
satisfying 0<0, <1+46% 0<0,<1, O =0,0,—1. (5.9)

Note that (5.9) can be solved for €}, if and only if (C},, Cy,) belongs to the region
shown in figure 1.
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Theorem 5.1. Let y? —y in WHP(Q;R®?) be such that cof Dy? is bounded in
LYQ; M*>*3) and

suppv, = SO (3)S* U SO (3)S-, (5.10)

for a.e. x€Q, where (v,), .o s the Young measure corresponding to Dy and p > 2,
q=p/(p—1). Then det Dy(x) =1 a.e. e, and

Dy(x)*Dy(x)eR, a.e. xzef. (5.11)
1/p 0 o0
Equivalently, Dy(z) =R(x)[ 0 1 0 ], a.e. xe, (5.12)
af@) 0 p)
where B: Q280 (3) and a:2— R, p:Q2— R satisfy the inequalities
p) <1, p)?[*—a)®+1]=>1, ae xef. (5.13)

Proof. The following assertions hold for a.e. x€ Q2. By Lemma 3.3 (2), we can write
v, = vi+v,, where supprvi < SO (3)S*. Define pr(F) = vi(HS*) for every Borel
subset B of M**3. Then u}, u, are positive measures on M**® with supp pF < SO (3).
By a standard change of variable formula (cf. Halmos 1974, p. 163), for any
continuous function f: M**® — R,

Gy = guass | gaasa)
so3) st S0 (3)8~
(5.14)
~ [ s s
S0 (3) S0 (3)
We apply Proposition 3.4 (see (3.24), (3.25)). First, using (5.14),
Dy <anA>e2 .%') €2, (515)
where M(zx) = f Rdu,(R), p, = pt+u;. (5.16)
S0 (3)
Next  (cof Dy(x)) e, = {v,,cofA)e,
= (J (R cofS*)d,u,;(R)+J. (Rcof S7)duz (R ))
SO (3) S0 (3)
= M(x)e,, (65.17)
where we have used the relations
detSt =1, S8 =1, (8%)T¢,=c¢,. (5.18)
Also, det Dy(x) = {v,,det 4) = 1. (6.19)
It follows from (5.15), (5.17), (5.19) that
def
C(x) = Dy(x)" Dy(x) (5.20)
satisfies O(x) e, = ey, detC(x) =1=C,(x) Ohy(x)— (Cr5(x))> (5.21)
To prove (5.11) it remains to establish the two inequalities in (5.9). But
(ATA),, = 1482, (ATA),, =1 (5.22)
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for every 4 esuppv,. Using (5.22) and Jensen’s inequality we deduce that
O (@) = (v, ADT v, AD)yy < vy, (ATA) ) = 1462, (5.23)
Css(@) = (v, ADT vy, AD)gy < vy, (ATA) 55 = 1, (5.24)

as required.

It is easily verified that if Dy(x) is given by (5.12) and if (5.13) holds, then
det Dy(x) = 1 and C(x) e R. Conversely suppose that det Dy(x) = 1 and C(x)eR. To
show that Dy(x) has the form (5.12), it suffices by the polar decomposition theorem
to show that the equation G(x)* G(x) = C(x) can be solved for a(x), B(x), where

1/6(x) 0 0
G(x) =[ 0 1 0 ] (5.25)
az) 0 px)
But this is easily checked; in fact there are two solutions given by
(@) = £ O, a(x) = +0y5 O (5.26)
L

An important consequence of the necessary conditions (5.25), (5.26) is that they
imply that the limiting deformation y is a plane strain (with respect to w,), i.e. y has
the form

Y(@) = Q(2(x), Ay +p, 25(x)), a.e. xel2, (5.27)
where Q€S0 (3), A,ueR and z, , =2, ,=0. To show this we make use of the
following general result, stated here in the three-dimensional case.

Theorem 5.2 (Ball & James 1991). Let ye Wh?(Q; R?), p > 3, with det Dy(x) > 0
Jor ae. xe Q and yly, = ylyq for some mapping ye C°(Q; R?) which is 1-1 in Q. Then y
s a plane strain if and only if

Dy(x)* Dy(x) ey, = A%,, a.e.xz€L, (5.28)
for some constant A # 0, and

0
—det D =0 5.29
2 At Dy (@) (5.29)
tn 2 in the sense of distributions.

Note that if % is as in Theorem 5.1 then by (5.11) y€ W"*(Q; R?*), while by (5.12),
Dy(x)* Dy(x) e, = e,, detDy(x) =1, a.e.xe. (5.30)
Applying Theorem 5.2 we thus obtain

Theorem 5.3. Let y satisfy the conclusions of Theorem 5.1 and be such that yl., = ylyo
for some mapping ye C°(82; R?) which is 1-1 in Q. Then y is a plane strain with A = 1.

6. The two-well problem: construction of macroscopic deformations
satisfying the necessary conditions

The aim of this section is to show that any sufficiently smooth deformation whose
gradient satisfies the necessary conditions in Theorem 5.1 is the weak limit of some
minimizing sequence. We do this first (Theorem 6.1, Corollary 6.2) for affine
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deformations, and then apply this result to deal with the general case (see Theorem
6.4).

Theorem 6.1. Let F e M3*® be such that F*F € R. Then there exists a sequence yP e
Wh=(Q; R®) n of  such that y(”—*\Fx in Wh*(Q; R®), and satisfying

|DyP(x)| < d,, detDyD(z)>d, >0, ae xe, (6.1)
meas {x € Q: Dy (x) ¢SO0 (3)S* U SO (3) S~} -0, (6.2)
suppr, = SO (3)S* U SO (3)S~, a.e.xef, (6.3)

where dy, = dy(9), d; = d,(0) are constants, and v, is the Young measure corresponding to
Dy,
The sequence can be chosen such that

Vo =ppp, s+ (1—p) [Adgs++ (1 —A) dps-], a.e.x€ Q, (6.4)
where A, pe[0,1] and R, R, €S0 (3) are constant and
rank {R, S”—[AS*+(1-A) ST < 1. (6.5)

Proof. We construct ¥ by putting piecewise constant deformation gradients on
layers within layers. First we show that for each A€[0,1] there is an R,eSO (3)
satisfying (6.5). After postmultiplication by S*, (6.5) becomes

R, =142)0¢;® ¢, +b, @ 2, (6.6)

b, and z, being unknown non-zero vectors in 3. By operating (6.6) and its transpose
on the axis of R, we find that for A # 0 the vectors b, and z, must lie in the ¢,, ¢, plane.
The (e,, e;) components of (6.6) are then

cost) sin6,| [1 0 0 0
[—SinﬁA 0080,\]_[0 1}4—[2/16 O]+rank—0ne, (6.7)

which is equivalent to

cosf,—1 sinf, |
det[—sin 0,—2A8 cost,— 1] =0 (6.8)
The two families of solutions delivered by (6.8) are

I' R/\ = 1a b,\®z)\ =_2/\663®61, (69)

1—A%%? 0 —2A0

14+ A%6% 14+ A%6%
Ry=[ 0 1 0 : (6.10)

20 1—A%?

. 0
H 14 A%6% 14+ A%6%
A0 0 1

b,\®z)\=%/{:§2|: 0 0 0]. (6.11)

A%E 0 Ad

(See figure 7 for a representation of the rank-one connections found above.)
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Figure 6. The sequences (a) y? and (b) y4'® constructed in the proof of Theorem 6.1.

KR ST+ (1—p)[ASH+(1-1)S7]

.

ASTH(1-2)S™
Figure 7. Rank-one connections between the wells SO (3)S* and SO (3)S~.

We now begin the construction of appropriate sequences y? corresponding to each
of these two families. For family I, and a given {€[0, 1], let 0: R—[0, {(1 —{)] be the
continuous 1-periodic function satisfying

; _[(1—§)(t+§) for —¢{<t<0,
(t)_]—§(¢—1+§) for 0<t<1—¢
Let yD(x) = (ST +(1 =) ST )x+205710(jx e;) e5, x€Q. (6.13)

A picture of a typical member of this sequence is shown at the top of figure 6. Note
that Dy{? takes almost everywhere only the two values S* and S~. An easy
calculation based on (6.13) shows that as j— oo

(6.12)

Sy, (6.14)
where y=¢ST+ (1= 8. (6.15)

Since Dy €{S*,87} a.e., Theorem 3.1 shows that the Young measure based on Dy{”
is supported on the matrices S* and S~, and therefore can be written in the form (6.4)
with B, =1 and { = A(1—u).

We next consider family II. Since the case u = 0 is covered by the construction for
family I we assume that u # 0. Similarly, the case A =1 is covered by the
construction of family I provided S* and S~ are replaced by S* and R, S~. Also, the
cases A =0 and g =1 are covered by sequences of linear deformations. Thus we
assume without loss of generality that A(1—A) # 0, u(1—u) # 0. Referring to family
I1, let m, = (S7)Tz,, |m,| =1, m, e, > 0 so that R, S™—(AST+(1—2)87) = b, ® m,.
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Note that m, is not parallel to e, for any A€ (0, 1). Let pe B* and the positive integers
7, k satisfy the relation
plAL=A)/k] < g{p(1—p)/j]. (6.16)

Let ¢: R— [0, u(1—p)] and yr: R— [0, A(1 —A)] be the continuous 1-periodic functions
defined by

1—u)(t+ f —u <t <O,
B(t) = {( w)(t+up) for —p (6.17)
—put—14+p) for 0<t<1—upu,
1=A)(t+2A) £ —-A<t<0,
w(l) = {( J(E+2) for (6.18)
—At—14+A) for 0<i<1—A.
Note that under the restriction ¢’(jx-m,) = —u, the regions
def
It ={xeQ 7 0(jx -m,) < pk ™ W(kx e,)},
{ I m) < pkTi (ke (6.19)

def

I~ = e Qi P(jum) > u(l—p)j—pk i (ka-ey),

define the little triangular prisms pictured in figure 65 and labelled D" and D~ in the
inset. Still under the restriction ¢'(jx m,) = —u, the small slabs labelled S* and S~
are given by
def
St ={xeQ vy (kx-e) =1-A\(F" U I),
def

S ={xeQ Y (kx-e)) = I\ (I U I).

(6.20)

To complete the description, the big layers &, and %, are given by

def
%, = weQ: g/ (jrm,y) = 1— 1,
det (6.21)
= (e Qi (jrm,) = — ).
Let the matrices D" and D~ be defined by
D* = R, 8 — (b, +20up~te,) ® m,. (6.22)
Now let 3% :Q — R? be continuous and satisfy »{#(0) = 0 and
R,8~ for xze9,
St for xe%, n I,
Dy(x) ={ S~ for zeZ, NS, (6.23)
D~ for ze%, n s,
D~ for xeZ, n S .

It is laboriously checked that such a function exists for each j, k and p consistent with
(6.16) and that y{-® e W ©(Q; R?). The total volume of triangular prisms in Q is
subject to the restriction

vol (7 U J7) < C(Q) [p(A(1 = A))/ kpe] [1/ k] jk, (6.24)
where ((£2) depends only on the maximum diameter of €. This suggests defining
Yy =yd?, j=NN+1,... (6.25)

Phil. Trans. R. Soc. Lond. A (1992)
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From (6.22) it follows that for p > 0 sufficiently large
det D* > const. > 0. (6.26)

For such a p there exists N = N(p) such that (6.16) holds for k = j* and j > N. Clearly
y,j=N,N+1, ..., is a bounded sequence in W' ®(Q; R?), so that for an appropriate
subsequence,

Y Sy in W@ RY), (6.27)

for some y;; e W-*(Q2; R3). A straightforward calculation based on (6.23) in fact
shows that (6.27) holds for the whole sequence y{J, j = N,N+1, ... . Because of the
volume restriction (6.24), the Young measure v, of Dy{? is supported for a.e. x€Q
only on the three matrices R, S~, 8* and 87, and we thus obtain (6.4) with R = 1.
From (6.4) and the condition y{9(0) =0, 5 =N,N+1,..., we get

yu(x) = [uR,S™+ (1 —pu) (AST+(1—=A)S87) ]z, a.e.xz€f. (6.28)
We now show that either of the sequences y{” or ¥ can be modified to exactly

satisfy the associated linear boundary conditions. Let y(”—ty in Wh*(Q; R?

represent either of these sequences, where y = Fz, x € Q. For ¢ > 0 sufficiently small,
let

Q, = {xeQ:dist (x,0Q) > ¢}. (6.29)
Let e C*(R?;[0, 1]) satisfy for each sufficiently small ¢ > 0,
1 f e,
ew={ (6.30)
0 for zeR\Q,
and |DE (%) < const. e, xeR3. (6.31)

The function £, may be constructed in a standard fashion, using mollification and the
fact that the function dist (x,0Q) is Lipschitz. Following Chipot & Kinderlehrer
(1988, §2), let 72 e W' *(Q; R®) be defined for each sufficiently small ¢ > 0 and for
i=12 .., by

Y9 () = £ (@) yP (@) + (1 =€ (v) For, 2eQ. (6.32)
Then for such ¢ and j, y*9(x) = Fx, x€dQ, and
Dy79(x) = (y*? —y) ® D&+ (£, Dy +(1-¢) F) ae. (6.33)
For family I,
det [, Dy P+ (1—E)F] =1, ae. (6.34)
For family II, we note that
det (8" +(1—£)F) = 1+4ud?A(1—A) £, (1 —£,)/(1+ A262), (6.35)
det (§,87+(1=£) F) = 1 —4ud®A% (1 —E£,) /(1 + A20?), (6.36)
det (§,. R, S+ (1—¢)F) =1, (6.37)
det (£, D% +(1—£)F) = 14 28u/p(1+ (1 + ) )%, (6.38)

so that for p sufficiently large
det [, Dy + (1 —¢)F] > 2d, > 0, (6.39)
where d, = d,(d) is a constant.

Phil. Trans. R. Soc. Lond. A (1992)
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Since y@ — y uniformly in Q, by (6.33) it is thus possible for each ¢ > 0 to pick j,
such that .

|Dy 99 ()] < dy, (6.40)

det Dy (z) = d, > 0, (6.41)

for a.e. xeQ, where d, = d(d) is constant. The modified family y° =y now
satisfies the linear boundary conditions y®(x) = Fx, €082, and has the same Young
measure as y? (as ¢ >0) because

lim meas (2\2,) = 0, (6.42)
>0
(see Theorem 3.1) from which (6.2) also follows.

To complete the proof, we show that every F e M®*® with F*F € R can be obtained
as the limit of one of the sequences Dy{? of Dy? found above, after possibly
premultiplying these sequences by a constant rotation. By including the trivial linear
deformations with gradients on one of the wells we can achieve the limiting
deformation gradients

F, , = R{uR,S™+ (1—p) (AS* + (1—2)§7)], (6.43)

with A€[0, 1], x€[0, 1], ReSO (3) with corresponding Young measure given by (6.4).
Let
C(A, ) = (F,

S

' F,

ST

(6.44)

We have to show that any C'e R can be achieved by an appropriate choice of A,
1€[0,1]. Since det C(A, u) = 1, C(A, u) e, = e,, and since the sign of C},(A, u) can be
changed via the transformation

g (x) = Ry (Rx), (6.45)

where Re, = e,, Re, = —e,, Re, =—e,, it suffices to show that any pair (C,,,Cj;,)
satisfying O}, Cgy =1, 0 < Cyy < 1, C}; < 1+46% can be achieved for some choice

of A, u.
By a straightforward but lengthy calculation,
Cualdo ) = 1+62+A<1—A){A(llj—ﬁﬁmw—%f—1]+462w—1>}, (6.46)
Css(A, p) = [4A%0*(u—3)" + 1]/ [1+ A7), (6.47)
Ca(A, 1) = [8/(1 4 A202)][(2A — 1) (1 4 A262) + 2A(A02(2 — BA) — 1) p—4A202(1 — A) 2.
(6.48)

From here to the end of the proof it is helpful to refer to figure 8. Let

L) = Coa(d 1) CoA o) — 1. (6.49)
Note that f(A, u) = C5(A, #)?, so that f(A, ) = 0 if and only if u = uw*(A), where

— SN — 1 4 (SN — 20202 + 862N — 462 + 1)%+ 1

* — - 4
#=(A) 4N (1—N) 2 (6.50)
Case 1. 0 <6< 2.
We restrict the domain of g™ to [4, 1]. From (6.50),
w3 =0, limur(d) =14, (6.51)
A->1—
Phil. Trans. R. Soc. Lond. A (1992)
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1.2 1.6 ¢, 20

Figure 8. The curves Cy; (A, ), Cy3(A, p) for 6 =1 and A = 0.05, 0.1, 0.15, ..., 1. The dashed lines
correspond to A€ (0,0.5). Increasing line darkness corresponds to 1ncreasmg values of A.

so that u* € C°([3, 1]; R). To derive (6.51), we have used the conditions 0 < § < 2. The
following restrictions arise directly from (6.50) by multiplying and squaring:

SN = b= 22— 1)2 = 0.
Hence /,L‘L : [%, 1] —> [O, %] Note that
Cie ™ (@) = Cgsa " () = 1, (6.53)

On(Lpt (1)) = 1462 Cgy(1, u* (1)) = (1+32)_1-}

The equations (6.50)—(6.53) show that the whole curve C, C,, = 1, C}; €[1,1+ 8%, is
parametrized by (C,(A, p™(A)), Cas(A, ™ (A)) as A goes from L to 1. We now consider
a point on this curve and show that the horizontal line through that point in figure
8 which lies in the relevant domain is achieved by choosing appropriate A and u. Let
0336[(1+82 ~!,1]. By the above reasoning there is a A€[3,1] and a corresponding
h=u (/\) such that C,, = 033(/\ 4) and

O (A, ) Cy(A. i) = 1. (6.54)
Solve the equation (6.47) to get

def 2 02 17
{(1+/\6)O33 ] (8.55)

= /‘7’(/\’ O33) = %_ AN252

Consider the smooth parametrization of the horizontal line Cyy = Cy; given by €\, (A,
A, Cyy)), A€[A, 1], At A = A,

A ~

Coi(A, (A, o)) Ogy = 1, (6.56)
while at A = 1, Cy(1,ji(1, Oyy)) = 1462, (6.57)

Therefore the domain {(C\;,Cy3):C; Cy3 2 1, 0 < Oy < 1, O}, < 1+8%} is covered by
the functions (C;(A, ), Ogy(A, 1)) as A€[0,1], p€[0, 1]. This completes the proof of
Theorem 6.1 in Case 1.

Case 2. § > 2.

In this case the preceding proof breaks down because for § > 2 the parametrization
(O, (A, u*(A)), Cyg4(A, u*(A))) does not cover the entire curve C,Cy =1, O, €
[1, 14 0%], missing out a neighbourhood of the point O}, = Oy, = 1.

Phil. Trans. R. Soc. Lond. A (1992)
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0.8

33

0411

80
Figure 9. The curves C},(A, u) Cyy(A, p) for § = 10 and A = 0.05, 0.1, 0.15, ..., 1. The dashed lines
)-

0 40 C
(
correspond to A€(0,0.5). Increasing line darkness corresponds to 1ncreas1ng values of A.

Let A* be given by

A% = ((20)i—1)8671 >0, (6.58)
and note that Wo(A*F) = ut(A%) =L1—1/281* > 0, (6.59)
w(3) =0. (6.60)

Hence in this case we can cover the curve C}, Cyy = 1, €, €[1, 14+ 6%] by using the
parametrization

(Gulh 0 OO A 1)) 6.61)
(Cra(A, p7(A), Cy(A, 7 (A)),  Ae[A*,3].
The rest of the proof is identical to that for Case 1 after (6.53). O
See figure 9 for an example of the case 0 > 2.
Corollary 6.2. Assume further that dom W is sufficiently large, so that
dom W o {4deM¥3:|4| < d, detd > d,}, (6.62)

where dg,d, are as in the statement of Theorem 6.1. Then the sequence y? constructed in
Theorem 6.1 and satisfying (6.4) is a minimizing sequence for I in o .

Proof. By construction W(Dy?) is uniformly essentially bounded and tends to
zero in measure. Hence

lim | W(DyD)dz =0 (6.63)

j>o0 J Q2

as required. O

Remarks 6.3.

1. By, for example, Ball (1981, Theorem 2) each y»:Q - FQ is a homeomorphism.

2. In the case & > 2, which obviously does not occur in practice, the covering of the
region shown in figure 9 is not represented by the solid lines A = const. €3, 1] shown
there. In fact, for § > 2 the line A = § meets the curve (), C;; = 1 both at the point
(1,1) and at the point (30%,4/6%). This leaves a gap near the line €}, Uy, = 1 which,
however, is filled by the dashed curves from the family Ae€[0,3]. Figure 9 is
qualitatively representative of the case § > 2.

3. A construction of Kinderlehrer & Pedregal (1991c¢) involving four defor-
mation gradients also realizes all macroscopic deformations in the region shown in

Phil. Trans. R. Soc. Lond. A (1992)
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figures 8 and 9. This has some mathematical advantages, but is experimentally less
convenient that the construction given here, which has the property that the curve
A = constant corresponds to simple shear boundary conditions starting at a single
variant, as shown in §8 (see figure 10).

4. Theorem 5.1 and Corollary 6.2 can be viewed as together characterizing the zero
set of an appropriately defined relaxed free energy function. If, for example, we

define _ ) )
W) = inf{li_mj W(DyP)da:y P — Az in W-1(Q; R:‘)} (6.64)
Q

then, provided (6.62) holds, W(4) = 0 if and only if 4 e M3 with A"4 e R. To prove
this, note first that if AeM®*® with A"4eR then by Corollary 6.2 W(4) = 0.
Yonversely, if W(A4) = 0 then for each j there exists 4 e W"!(2; R®) such that

Iy —aal, <j% | Wopde <, (6.65)
Q

where we have used the compactness of the embedding W' 1(Q; %) < LY(2; R?). By
H2 we may assume that y? —y in W ?(Q; §®), so that y = Ax. Then by Proposition
4.1 and Theorem 5.1, 4 € M**® with A*4 e R.

Unfortunately, the bad behaviour of W for det 4 < 0 prevents us from being able
to say whether W is the lower quasiconvex envelope of W, as would be the case if W
were everywhere finite and satisfied suitable growth conditions (see Dacorogna 1989 ;
Acerbi & Fusco 1984 ; Buttazzo 1989).

We also note that under (6.62) it follows from (6.4) that the lower rank-one convex
envelope W" of W satisfies W(4) = 0 when 4 eM3® ATA eR, since

0 < W(A) < uW'(RR,87)+ (1— p) W(R(AS* + (1—2)87))
< pWI(RR, S7)+ (1 — p) [AWT(RST)+ (1 — A) W(RS™)]
< uW(RR, S7)+ (1—p) [AW(RS)+(1—A) WRS™)]| = 0.  (6.66)

5. Martensitic materials and various ceramics that undergo structural trans-
formations commonly exhibit microstructures having layers within layers. A
particularly dramatic picture taken from Arlt (1990) is shown in figure 10. We note
that a construction of Kinderlehrer & Pedregal (1991¢) involving four deformation
gradients from two variant wells looks similar to these pictures. See Remark (6.3),.
However, the pictures of Arlt probably involve deformation gradients from all three
variant wells. See also Basinski & Christian (1954), Baele et al. (1987, fig. 21), Enami
& Nenno (1971, fig. 3), and the papers of Arlt (1990) and Arlt & Sasko (1980). This
microstructure also results from some diffusional phase transformations, e.g. in alkali
feldspars (Willaime & Gandais 1972).

6. We note an interesting feature of the formulae (6.10), (6.11) giving the
orientation of the approximate interface between R,S~ and the finely twinned
laminate represented by AS* + (1 —A)S™. Postmultiplying (6.6) by S~ we see that the
normal to this approximate interface is given by (S7)*z,. From (6.11) we have that,
up to multiplication by a suitable constant,

(S7)'zy = (A—1) de; +e. (6.67)
Jonsider first the limit A —1—. In this case (S7)%2, >e; and R, S™ >R, S™, where
RS =8"—[28/(146%)] (e, + dey) ® ey (6.68)

is the reciprocal twin with interface normal e,.
Phil. Trans. RB. Soc. Lond. A (1992)
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Figure 10. A photomicrograph showing layers within layers in barium titanate. The irregular lines
represent grain boundaries. The surface of the specimen has been ground, polished and etched after
having been transformed from the cubic to the tetragonal phase by cooling. See table 1 for
transformation data on BaTiO,. See also Remark (6.3), and the construction of Theorem 6.1.
Photomicrograph courtesy of Philips Research Laboratories, Aachen (see Arlt 1990).

When A — 0+, however, we find that
R,S™—+8", STz —>—0de +e,. (6.69)

Thus, although the S* variant disappears as A -0+, leaving just S~, the approximate
interface has a limiting normal —de,+e,. Perhaps similar calculations could be
relevant for the study of ferroelastic bubbles in neodymium pentaphosphate (NPP),
as observed by Meeks (1986) (see also Meeks & Auld 1985). NPP undergoes an
orthorhombic to monoclinic phase transformation, so that the present theory
applies. A ferroelastic bubble is a region of twinned laminate embedded in a single
monoclinic variant and containing only a small volume fraction of the other variant.
The envelope of the laminated region appears to have a well-defined normal, which,
however, does vary with position (Meeks & Auld 1985, fig. 3). This is not
inconsistent with (6.69) since the bubbles are clearly stressed and therefore do not
involve only deformation gradients at potential well minima. NPP also exhibits
layering within layers, as predicted by the present theory. As shown in the beautiful
photographs of Meeks (1986), the layers taper as they approach the approximate
interface, creating a zig-zag pattern that would be very interesting to understand.
We now consider the case of general boundary conditions.

Theorem 6.4. Let e CM(Q; R?) be 1-1 and such that det Dy(x) > 0 and Dy(x)*
Dij(x)eR for all x€Q. Then there exists a sequence y”)—**y in Wh*(Q2; R®) satisfying
Yo = Fleos (6.70)
YD is a homeomorphism of £ onto §(£2), (6.71)
Dy (x)| < dy, detDyP(x) =>d, >0, ae xe, (6.72)
supprv, = SO (3)S* USO(3)S~, ae xef, (6.73)

Phil. Trans. R. Soc. Lond. A (1992)
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where dy = dy(8), d, = d(8) and (v,),eq 18 the Young measure corresponding to Dy?.
If dom W = {A e M> |4 < d,, det A = .}, (6.74)

then y'9 is a minimizing sequence for I in
= {ye Wh{(2; R®):ylg = Jlot- (6.75)

Proof. We first construct an appropriate sequence y not necessarily satisfying
the boundary condition (6.70).
By definition, since 7€ C*(2; R®) there exists an extension je C*(R®; R®) of 7. Given
J» we decompose R® as a disjoint union of regular simplices 7] , each having diameter
less than or equal to j~!. Let 2?: R®— R® be the continuous mapping which is affine
on each 7} ; and coincides with 7 at the vertices of each 7} ;. Using Taylor’s theorem
it fo]lows easﬂy that - 29 =7, >0 as j—o0. (6.76)
Fix now j and [ with 7} , N © non-empty. We may write
() =a+Ax, x€l],, (6.77)

where a = a, € R*, A=A, ,€eM>?. Pick some x; ,€T;, N 2 and let B = Djj(x; ;).
Since |Dy(x | is unlformly bounded in 2, by (6. 76) we may suppose that

IAB1—1] < j . (6.78)

Since det B > 0, B*B€ R, there exists by Theorem 6.1 some v'? e W *(1} ,; R®) with

V90, = Balop, (6.79)

Do) < dy,  det DD > d, (6.80)

and meas{xeT} ,:DvY(x)¢ M} < j ' meas T} , (6.81)
where M = SO (3)S* U SO (3)S™. Now define

Y (x) = a+AB W 0(), xel),. (6.82)

Then y(j>|aT“ = Z(j)|aTN: (6.83)

Dy D(x) = AB'DvUP(x) for xzelj,, (6.84)

and |DyD (x)] < 2d,, (6.85)

for a.e. x€ Q2 and j sufficiently large. Now let U be any open set containing M. For j
sufficiently large Dy?(z) e U whenever DvY:?(x)eM and xe Q. Thus from (6.81)

meas {x€Q: Dy ¢ U} < 25 ' meas Q, (6.86)
for j sufficiently large. Thus by Theorem 3.1 we can extract a subsequence, again
denoted y?, such that suppv, = M a.e. x€ Q2. Furthermore, since |Dy?| is bounded

in L*(£2) and since (6.76), (6.83) hold, it is easily shown that y? iyin Wt *(Q, R3).
We now apply the idea of Chipot & Kinderlehrer (1988, §2) used in the proof of
Theorem 6.1 to modify »'” so that (6.70) holds. Define §, as in that proof (see (6.30),

(6.31) and let 6.0 () = £ (2) yD () + (1 — £, (2)) Pl), 2. (6.87)
Then y9e W' *(Q2; R®) and
Dy (z) = (9 (@) — g(x) ® DE(x) + (E.(x) Dy (2) + (1 —£,(2)) Dy(z)), ae. xeL.
(6.88)
Phil. Trans. R. Soc. Lond. A (1992)
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Since y@ g uniformly in Q, and since [Dy(z)| < +/(3+6?) for all xeQ, it follows
from (6.85) that given ¢ > 0 we may choose j, sufficiently large so that

1Dy 9(2)| < dy(8), ae. xeQ, (6.89)

for some constant d,(d). To estimate det Dy 9 (x), note that by the calculation in the
proof of Theorem 6.1 (see (6.34)—(6.39))

det (&, (x) Do D(x) + (1 =& (x)) B) = 2d,(d), a.e.xeT],, (6.90)

where B = Djj(x; ;) as above. By using (6.78), (6.84) it follows easily that for j
sufficiently large
det (£,(x) Dy (x) + (1 — &.(x)) Dy(x)) = d,(5), a.e.x€Q, (6.91)

and hence that for j, sufficiently large
det Dy 9(2) = d,(8) > 0 (6.92)
for some constant d,(8). Setting ¥° = y'=9 we see that y* satisfies the conditions

(6.70), (6.72), (6.73) with yeigj in W *(Q; R?). That each y° is a homeomorphism of
Q onto 7(£2) is a consequence of Ball (1981, Theorem 2); to apply this theorem we
need the fact that 7(£2) is strongly Lipschitz, and this follows from Fraenkel (1979,
Remark 2, p. 411).

That y© is a minimizing sequence for I in o if (6.74) holds follows by the same
proof as Corollary 6.2. O

Remarks 6.5.
1. Let p > 2. Since I(y?) >0, ¥ is also a minimizing sequence for [ in

o ={ye Wh (2 R®):ylg, = oo, J det Dy(x) dx < measy(2)}, (6.93)
Q

(cf. (4.7)).

2. It would have been more natural to have made the weaker smoothness
hypothesis 7€ W"*(2, R®) in Theorem 6.4. But we would have then faced the
difficulty of approximating # by piecewise affine functions with positive determinant,
and we are not aware of an appropriate result in the literature.

7. Uniqueness of twinned laminates and the reduction from three wells to
two wells

In this section we explore the possibility that for special linear boundary
conditions the minimizing microstructure is essentially unique. Also, we show that in
the cubic to tetragonal case for 6 < 0, microstructures formed from the three wells
actually involve only deformation gradients from two of the wells if the boundary
conditions are those arising from the two-well problem.

It follows from the result mentioned in Remark (6.3), that we have non-uniqueness
of the microstructure in the two-well problem if the linear boundary conditions
y(x) = Fa, xedQ, satisfy (FTF),, # 1 and (F'F),, # 1+02 If either (F"F);; =1 or
(FTF),, = 1+ 6% and F*F belongs to the domain R of figure 1, then by Theorem 6.1

PHil. Trans. R. Soc. Lond. A (1992)
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the boundary conditions y(x) = Fz are achieved by a twinned laminate. We now show
that in this special case this is the only possible microstructure in the sense that the
Young measure is uniquely determined by the boundary conditions.

Theorem 7.1. Let yP —y in WhP(Q; R®) be such that cof Dy is bounded in
L9(Q; M>*3) and
supp v, < SO (3)S* U SO (3) S~ (7.1)
Jor ae.xeQ, where (v;),cq is the Young measure corresponding to Dy and p = 2,
q=p/(p—1). Suppose y? €.l ,, and either

(F*F),, =1 or (FTF),, = 1+0% (7.2)

Then v, is uniquely determined by F and is independent of x. In the case (F*F),, = 1,
there are A€[0,1] and ReSO (3) such that F = ARS™+ (1 —A) RS~ and

v, = Adggt+ (1 —A) 0ps, (7.3)
while if (FTF),, = 1402, there are pe(0,1] and ReSO (3) such that R = uRR,
S™+(1—pu)RS™ and

Vy = WOpp, s+ (1—p) Opgt. (7.4)
In (7.4) R, is R, where R, is given by (6.5).

Proof. First we note that by Proposition 4.1 and Theorem 4.4 there is a sequence
§P—Fx in W-? with §9?e.o/,, and cof D§ bounded in L%(Q;M>*®) (which is
constructed from y as in the proof of Theorem 4.4) and having the property that
the Young measure (7,),.o of D7 is also supported on SO (3)S™ U SO (3)S~. Tt

follows then from the basic necessary conditions, Theorem 5.1, that F*FeR. By a
straightforward calculation

(F'F);y =1 = F=2ARS'+(1—A)RS", } (7.5)
(FTF), = 1+8 = F=uRR S +(1—u)RS", )
with ReS0 (3), Ae[0,1], ue[0, 1].
We use the notation
def
GoT @) = | Cofldy) s
o
ZJ[ f f(4)do(4)dz. (7.6)
QJsuppo,

Because f(4) = 4 is anulllagrangian, F = {v,, 4 ). Consider first the case (FTF),, = 1.
By Jensen’s inequality and (5.24),,

L= (FTF)gy = (v ATy A)) gy < vy, (ATA) > = 1. (7.7)
Hence we have equality throughout (7.7) and so
(Vg (A" A ) gy — (K, ADT (v, AD)g51> = 0. (7.8)
Again using F = (v,,4), we write (7.8) in the form
g, [(A—=F)H (A—F)]3) =0, (7.9)
which yields (A—F)e;=0 V Aesuppv,. (7.10)

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

a
/,// \\
/

A
( P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Tests of fine microstructure 433
In terms of the measures pF introduced in (5.14), (7.10) is equivalent to

RS*e; = Fe, V Resuppul, 711
RS e;=Fe, VY Resuppu;,. (7.11)
Since S*e, = ¢,, we have from (7.5); that |Fe,|? = 1. Again using S*e, = e,,

Fe, = v, Aeyy = p,, Rey), (7.12)

where the probability measure u, = uf + u; was introduced in (5.12). From (7.12) and
|Fe,)> =1 we find that

<lux: |R62_F82|2> = 2<lux7 1— |F62|2> =0. (713)
Hence, Re,=Fe, Y Resuppu,. (7.14)

But e, 187, (= S*e, = ¢,) so the conditions (7.11) and (7.14) together show that the
supports of x4} and of pu, each consist of a single matrix R for a.e. x€£2. This proves
that

v, = Ax) Opet+ (1 — A(x)) Opg-s (7.15)

where 0 < A(z) < 1 a.e. To prove that A(xz) = const. we calculate
Dy(x) = (v, 4) = A(x) RST + (1 — A(x)) BS™. (7.16)
Note that Y o=~Re,=Fe,, 1y =Re;=Fe, (7.17)

a.e. in Q. Let z = y—Fx. Extend z by zero to some cube ¢ compactly containing €.
Since ze Wi ©(2; R?) and L is strongly Lipschitz it follows that ze Wi ©(@; &®). From
(717) 2z , =2 3 =0 a.e. in . Hence z = z(x,), which clearly implies that z =0 and
A(x) = A = const. This proves (7.3).
The same argument works for the case (F*F),; = 14 ¢ In this case the conclusion
(7.11) is replaced by
RS*te, =Fe, ¥V Resupp,u;,} (7.18)

RS~ e, =Fe, ¥ Resuppu,,

while (7.14) remains true. Thus, the supports of u} and of u; each consist of a
singleton. These supports are found to be of the form I and RR,, respectively, for
some R €S0 (3). A similar argument as given in (7.15)—(7.17) then shows that u(x) =
const. a.e. as required. O

Remark 7.2. For boundary conditions assumed in Theorem 7.1 v, is unique and
does not reduce to a §-function if A(1—A) # 0 or if u(1—u) # 0. Thus, in these cases
the problem infl(y), y€./,, does not have an attained absolute minimum. We
conjecture that the minimum of I(y) on &/, is not attained for any F satisfying F*Fe
R—(S*)*S*. This conjecture is based on the observation that the obvious
piecewise affine deformations y with Dy™Dy = S* have the property that y ,, =0
holds in the sense of distributions (see figure 12). If y 5, = 0 it follows easily that if
y(x) = Fz, x€dQ, and 2 is a cube with edges parallel to the coordinate axes, then
y(x) = Fa for x € 2. This contradicts the assumption FTF e R— (§*)* §*. An argument
along the lines of (4.37) and (4.38) then allows us to relax the condition that Q is a
cube. Unfortunately, we have not been able to prove that y 5 = 0 in 2'(Q2) for
general mappings ye€ Wb ©(2; B®) with Dy™Dy = S* and det Dy = 1 a.e.

We now explore the possibility that for microstructures formed from three wells,
only two wells actually participate in the microstructure if the boundary conditions
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are suitably restricted. One might expect such a reduction if the boundary conditions
are those delivered by the two-well problem, but a slightly weaker restriction on the
boundary data suffices in the cubic to tetragonal case. For simplicity we restrict
attention to linear boundary conditions.

We begin by recalling that the variants for a cubic to tetragonal transformation
are described by the three matrices U, =9, 14+ (9,—7,)e;®e;, ©=1,2,3, 5, >0,
7, > 0, {e,} orthonormal. Necessary conditions for the sequence y® —yin W ?(Q; R?),
p = 2, satisfying the boundedness hypotheses of Theorem 7.1 to have a Young measure
v, supported on just the two wells SO (3) U; U SO (3) U, are

F={, Ay =A4,U+A4,U,, .19
FT= (v, cof Ay = A, Uj*+ A, U;", detF = 77??72-} 19)

Here we have applied Proposition 3.4 and we have used the fact that 4, cof4 and
det A are null lagrangians. The matrices 4, and 4, are given by

Aizjff RAui(R), i=1,2, (7.20)
QJ S0 (3)

and the measures u> and u2 are supported on SO (3) (cf. the proof of Theorem 5.1).
We operate (7.19), , on e; and get

Fey=n,(4,+4,)e;, Fleg=n7'(4,+4,)e,, (7.21)
which imply that FTFe, = p2e,, (7.22)
since det F' # 0 by (7.19),. Under the restriction (7.22) we shall eliminate the variant
corresponding to U,.

Theorem 7.3. Let U, =9, 1+ (n,—n,)e; Q@ e;, 0 =1,2,3, 5, >0, 9, > 0, {e;} ortho-
normal. Suppose y P —y in WhP(Q; R?) is such that cof Dy? is bounded in L4(Q ; M>*3)
and

suppv, = SO 3)U, U SO @3)U, U SO (3)U, (7.23)
for a.e. xeQ, where (v,), 0, is the Young measure corresponding to Dy and p > 2,
q = p/(p—1). Suppose yP €., and
FTFe, = nie,. (7.24)
Then suppv, < SO@B)U, U SO@3)U, a.e.xel.

Proof. The theorem follows trivially if , = 5, so we assume 5, # 7,. Using again
the minors relations (Proposition 3.4) and the fact that the minors are null
lagrangians, we get

F=A,U+A4,U,+4,U, }

| 25

FT= A, U+ A, Uy + A, U;Y, det F =iy, > 0, (7.25)

where A, =J[ j Rdui(R)dx, i=1,2,3. (7.26)
2J80(3)

Here u'(E) = v, (EU,) for every Borel subset £ of M?*? each u! is supported for a.e.
def
xe €2 on SO (3) and p, = ul+u%+ul is a probability measure. Let

M=A,+A4,+4, =f f Rdu,(R). (7.27)
2 J8S0(3)

Phil. Trans. R. Soc. Lond. A (1992)
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Tests of fine microstructure 435
Using the definitions of U; and M, we operate (7.25), , on e; and get
Fey =9, Mes+ (n,—1,) Az e, } (7.28)
F ey =9y Mey+ (3" — 7 ) Ayey
But (7.24), i.e. Fe; = 92 FTe,, together with (7.28), imply that

(Mma—n1) Azes = ((11/12) — 1) Az es, (7.29)
that is, since 9, # 7,,
Aye, =0, (7.30)
and Fey, =9, Mey, F Tey =y Me,. (7.31)
Note that since Fe, F e, = e, ¢, = 1, we have |Me,| = 1. But
Me, =J[ f Reydp,(R)dx, (7.32)
eJsow
S0 f J |Re,—Me,|* dp,(R)dax = 2} f (1—Rey - Me,) du,(R) de
eJsom eJso®

=2(1—|Me,?) = 0. (7.33)
We conclude from (7.33) that

Rey; = Me, ¥V Resupppu,. (7.34)
Combining (7.30) and (7.34), we get

0=A4,e, = J[ f Re, du(R)dx
eJso®

=‘Meajj f dpd(R) de, (7.35)
eJso®

which shows that u2 = 0a.e. zeQ. O

Remark 7.4. Of course, to eliminate the sth well from the microstructure it is
sufficient to assume
FTFe, = n2e,. (7.36)

There are various trivial generalizations of Theorem 7.3 obtained by changing
variables in the manner of §5, equations (5.1)—(5.5). We were not able to find
restrictions on the boundary conditions that would reduce the six variants of the
cubic to orthorhombic case to two variants. In fact, it appears not possible to make
the reduction to two wells in the cubic to orthorhombic or cubic to monoclinic cases.
This may possibly be significant in that many shape-memory materials undergo
transformations of the type cubic to orthorhombic or monoclinic and these materials
very easily rearrange variants under applied displacements.

8. Experimental tests
(a) Tests associated with unique microstructures

The boundary conditions of Theorem 7.1 suggest an experimental test for which
the theory predicts a singly laminated microstructure. Consider an energy function
W(F,0) of the type described in §2 specialized to either a cubic to tetragonal
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transformation or to an orthorhombic to monoclinic transformation and with 6 < 6,,.
Let U, # U, be positive-definite symmetric matrices on two wells and suppose that
ReSO (3), ae B3, ne R® satisfy

RU,—U, =a®@mn. (8.1)
For Ae€(0,1] let
F,=ARU,+(1-2)U,, (8.2)

and consider the problem of minimizing

I(y) = J W(Dy, 0)dx (8.3)
Q

for ye .o/, . Here we shall assume (4.9) so that H1-H4 are satisfied and the results of
§§5, 6 and 7 apply. Retracing the steps in the change of variables (5.4) and (5.5) we
see from Remark 7.2 that if A€ (0,1) then I(y), yeMFA, does not have an attained
absolute minimum in the orthorhombic to monoclinic case. In the cubic to tetragonal
case we reach the same conclusion by first using Theorem 7.3 to show that the third
well SO (3) U, does not participate in the microstructure. Thus in either case the
theory delivers a unique Young measure of the form

Yy = Adpy, + (1= 1) 0. (8.4)

Examples of minimizing sequences are given by the construction of Theorem 6.1,
figure 6a, after the change of variables (5.4) and (5.5). Again using this change of
variables we see that minimizing sequences are given by layers of alternating width
AT, (=) B Ak~ (1—=A) k7L, ..., upon which Dy™® takes the values RU,, U,, RU,,
U,, ..., respectively, this being modified in a layer of width ™' near 02 so as to
exactly satisfy the boundary conditions.

For example, if a crystal of tetragonal symmetry, which arose by cooling a cubic
crystal through a transformation at 0 = 6, is subject to the boundary conditions
y = F x,xe0,1€(0,1), weexpect to see a finely laminated microstructure consisting
of the two deformation gradients RU,, U, in the proportion A/(1—A). The observed
normal to the layers is expected to be U;'n where n is given by (8.1). Recall that U,
and U, are completely determined by the measured lattice parameters so the
proposed experiment involves no free parameters.

The mechanics of the proposed experiment are better understood if we use (8.1) to
rewrite /), in the form

F=01+A®U'n)U,. (8.5)
Since det F, = det U, we have a-U;*n = 0. Thus, the boundary conditions can be
produced by first applying &(x) = U, x, x €02 (homogeneous transformation), and
then applying y(£) = (1+Aa ® U'n) &, £€d(U, 2) (simple shear). The amount of
shear is linearly parametrized by A. Further details are given by Chu (1991).

(b) Shear experiments that explore the structure of R

Another line of experimentation suggested by our results is to probe the boundary
of the set shown in figure 1. Again, these tests could be attempted in either the cubic
to tetragonal or the orthorhombic to monoclinic case with § < 6,. To be definite, we
describe the tests for cubic to tetragonal transformations. Consider an energy
function W(F,0) of the type described in §2 specialized to a cubic to tetragonal
transformation and with 6 < 6,. Then W(-, ) has minimizers of the form

SO (3)U, U SO (3)U, U SO (3)U, (8.6)
Phil. Trans. R. Soc. Lond. A (1992)
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with U, U, and U, given as in Theorem 7.3. To avoid trivialities we assume %, # 7,,
and again we assume (4.9) so that H1-H4 are satisfied and the results of §§5, 6 and
7 apply. However, now we consider the problem of finding all ¥ € M3*® satisfying

inf  I{y)=0 (=minW(-,0)). (8.7)
vesd MB¥B
FrFe=y}e,

As shown just before Theorem 7.3, the condition F*Fe, = 52 e, is necessary that any
minimizing sequence for the problem inf/(y), y € o/ ;,, has a Young measure supported
on SO (3) U, U SO (3) U,, while Theorem 7.3 establishes sufficiency. Thus, the problem
of determining F satisfying (8.7) is the two-well problem, which in the present case
is solved by Theorems 5.1 and 6.1. To determine the set of F satisfying (8.7), we only
need to find all /" such that after applying the change of variables (5.4), (5.5), F > &
where GG € R. The result of this calculation is given in figure 11. The domain shown
in figure 11 together with the condition det (FTF) = 9} 92 completely determines the
set of all F satisfying (8.7). The two curves that bound the domain correspond to
singly laminated microstructures. (At first this may seem strange because the curve
C,,C;3 = 1 on the boundary of figure 1 does not correspond to a singly laminated
microstructure. This happens because both figures 1 and 11 are projections. The
change of variables (5.4) and (5.5) maps the curve ('}, C,; = 1 onto the line a = b.)
These results suggest the following tests. Beginning at a point inside the domain
shown in figure 11 corresponding to a matrix ¥, we can impose a one parameter
family of deformations ¥, which remain in this domain up to ¢ = ¢, and then pass out
of the domain. Since there are minimizing sequences all having the same limiting
energy for t€|0,¢,], we expect that the material will easily deform along this path.
However, fort > ¢, infI(y) > 0 for y € o/ ;,, so that we expect to see a sudden stiffening
of the material at { = ¢,. Note that the domain in figure 11 is completely determined
by 7, and 7, so the stiffening point ¥, for any given loading path is also completely

determined by 5, and ,.
The natural paths to choose in figure 11 are the images of the paths shown in figure
8, after the appropriate change of variables. These paths are given by the functions

Fy = pRy U+ (1= p) [ARU,+ (1 =) U], (8.8)
where R satisfies (8.1) and R, satisfies for each A€[0, 1],
R U —[ARU,+(1 - U, =b,®m, (8.9)

for some b, € R?, m, e R*. Note that F,  is expressible in the form
(1+(p—1)b, ® R,U m,) R, U,. (8.10)

Also, det K, , = det U, = det U, implies that b, (R, U;'m,) = 0 so that (8.10) can be
viewed as a homogeneous transformation followed by a simple shear. The only
appearance of g in (8.10) is in the coefficient of b, ® R, U;* m, so that if A is fixed, the
angle of shear is parametrized by x# only. The experiment can be carried out by first
fixing A, which determines the orientation of the specimen when it is cut out of the
transformed material, and then applying a simple shear. At a certain value of the
angle of shear determined by A and the material constants », and #,, the theory
predicts stiffening.

Possible microstructures consistent with the boundary conditions (8.8) and
A€(0,1], p€[0,1] are layers within layers, the fine layers supporting deformation
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Figure 11. The values of a = (F'F),; and b = (F'"F),, in the cubic basis {e,;} corresponding to
solutions of (8.7). The values of the remaining components of FTF are given by (F""F),, = + (ab—
NiNE) (FF)gy = i, (FF)yy = (FTF)y5 = 0. (i) b = pi+95+a—2((ri +93) a—nin3)%; (i) b = nini/a.

gradients RU, and U; in the proportion A/(1—A) and the coarse layer sup-
porting the deformation gradient &, U,. However, the details of the morphology
of the microstructure are not in this case predicted by the theory, since there
is no uniqueness. The theory does predict that the third variant SO (3) U, should be
absent, and that the macroscopic deformation should be a plane strain (see also
Remark 8.1 below).

Remark 8.1. It follows from Theorem 5.3 and the linear change of variables (5.3),
(5.4) that the weak limits of minimizing sequences ' associated with the present
and the preceding experimental tests are all plane strains. The physical interpretation
of this prediction is that the observed macroscopic deformations are expected to be
plane strains on all of €. In this remark we observe that these sequences are also
predicted to be microscopic plane strains. By microscopic plane strain with respect to
x, we mean that after possibly premultiplying the sequence by a constant rotation,
the Young measure (v,),.o of Dy? has the property

YAl —
ey Ge, =0,

ey Gey, = 0. (8.11)

Gesuppv, = {
This result follows for the sequences considered here from the proof of Theorem 5.1.

That is, by (5.15) and (5.21),,
Me,-Me, = 1. (8.12)

Then (5.16) yields |e] = 1, where
e= J Re,dp, (R). (8.13)
S0 (3
Following the usual line of argument, we get from (8.13) and [|e| = 1,
f |Rey,—e|*dp,(R) =2(1—e-e) =0, (8.14)
SO (3)

which together with Lemma 3.3 shows that suppp, < {£eSO (3):Re, = ¢}. Since
Phil. Trans. R. Soc. Lond. A (1992)
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y » = ¢, it follows from Theorem 5.3 that by premultiplying the sequence ¥ by a
constant rotation, we can assume without loss of generality that ¢ = ¢,. The result
(8.11) then follows from the definition of g, and the conditions e, S*e, =0,
e,'S*e; = 0. The physical interpretation of this result for the tests proposed here
is the absence of surface relief on the plane perpendicular to the direction and plane of
shear. This indicates that the method of Moire microscopy (cf. Shield & Kim 1991)
may be applicable to the measurement of microscopic strains and rotations in these
tests, and further suggests that possible high resolution images of deformed micro-
structures would be less difficult to interpret.

A striking fact was revealed to us by plotting the domain shown in figure 11 for
various values of %, and #,. It was found that the domain was extremely thin for
values of 5, and 5, measured for typical materials that undergo cubic to tetragonal
transformations, for example, those shown in table 1. A short calculation based on
the formulae given in figure 11 shows why this is so. Using those formulae, we find
that the maximum diameter of the domain, (i.e. the diameter of the largest ball that
lies in the domain) is

d = +/(2) (1, —1,)* /403 + 93). (8.15)

In the common case (see InTl in table 1) of y, = 1+2¢, 9, = 1 —¢ with small ¢ > 0,
we have d < 21¢*. The value of (F'F),, for any (a,b) in the domain of figure 11 is less
or equal to dt. Hence, (F"F),, can be an order of magnitude larger than d, which is
still quite small. A consequence of these inequalities is that each set of boundary
conditions y(x) = Fz, x€df, that can be accommodated by the two variants
SO (3) U, U SO (3) U, is close in a certain sense to another set of boundary conditions
y(x) = Gx, x€ 082 with G corresponding to a single laminate. This may bear a relation
to the observation of Arlt (1990) showing that a crystallite in a bulk polycrystal
transforms with ‘layers within layers’ while a thin polycrystalline plate containing
the same crystallite, obtained by slicing the original crystal, transforms into a singly
laminated microstructure. The thinness of the domain of figure 11 may also help to
explain why Collins & Luskin (1989) found that single laminates resulted from
computations of coarse meshes, even when the boundary conditions were chosen
from the interior of the domain of figure 11.

A remark by Bhattacharya may help to clarify the relation of the present
discussion to Arlt’s work. Bhattacharya (1990) shows that there are a variety of
boundary conditions y(x) = Fa, x €08, achieved by microstructures using all three
variants SO (3) U; U SO (3) U, U SO (3) U, but such that

I1F =G > 9i(ni—ni) (8.16)

holds for any @ associated with a singly laminated microstructure. Note the large
disparity between the right-hand sides of (8.16) and (8.15). We close this section by
observing that the idea that a certain simple microstructure which does not quite
meet the boundary conditions may be preferred over a more complicated one that
does would have to be justified in terms of a model that accounts for other energies
than considered here. See Arlt (1990) for calculations in this direction. Our proposed
tests should shed light on this issue by providing observations with well-characterized
boundary conditions.

Phil. Trans. R. Soc. Lond. A (1992)
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9. Comparisons with the theory of Khachaturyan-Roitburd-Shatalov
(@) Formal derivation of the KRS theory

As discussed in the introduction, Kohn (1990a) has shown that the KRS theory
can be viewed as a linearization of the theory analysed in the preceding sections. In
deriving the KRS theory, Kohn starts from a nonlinear frame-indifferent free energy
function of the special form

W(d) = min W(4), (9.1)
1<iSN
where the free energy W, of the ith phase is minimized at 4 €S0 (3)U,, U, = Uf > 0.
On making the scaling y=x+eu, U, =1+cH, W,(U,) = c*w,, he derives the
‘linearized’ free energy function W, (e), e = e(u) = Y Du+ (Du)"), given in (1.7). Since
W given by (9.1) is not in general smooth and has special properties under scaling,
we modify Kohn’s approach here.

We begin with a family W = W(e, 4) of free energy functions depending on a small
parameter € > 0. We suppose that W is sufficiently smooth in ¢, 4 and that W(e, -) is
frame indifferent. We further assume that the local minimizers of W(e, U) among
positive symmetric matrices U are given by the N matrices

Ufe) = 1+eH,+ Zye), 1<i<N, (9.2)

where H;, = H} and Z,(e) = O(¢*). (As a concrete example, we could suppose that
W(e, A) is minimized at SO (3)SF U SO (3)8,, S = 1+ee; @ e,. In this case N =2,
Uye) = 1+3e(e, @ ez +e; @ ey) +Zy(€), Uy(e) = 1—3e(e; @ e3+ ;@ 1) +Zy(e).) To
derive the KRS theory it seems necessary to assume not only that the deformation
gradient Dy(x) is near 1, but that Dy(x) is for each «x sufficiently close to one of the
energy wells SO (3) U,(¢) for a quadratic approximation to the energy to be valid. We
thus suppose y has the form

y(x) = x+ez(x),
where Dz(x) = F () + 3G, 5(x), (9.4)
6 > 0 is another small parameter,
[(1+6F, (@) (1+6F, (@)t = Uyyyle), (9.5)
where i(x)€{1,..., N}, and
G, 5@) = I'(@)+ R, ()

with I'(z) independent of ¢,d and |R_ [l ., = o(1) as €, 6 >0. Let M = | I, . In the
calculations below we write G(x) = G, s(x) for simplicity.

We now use the fact (cf. Ball 1984, Lemma 6.3) that the map U: M3*® > >3
defined by U(4) = (A"A4) is smooth with D, U(1) @ = }(G 4+ G*). Thus from (9.3), (9.4)
we have that

UDy) = U1 +eF)+D, Ul +eF,+ed(x) @) edG, |8(x)| <0,
= U(l+¢eF)+ D, U(1)edG+ O(€%).
Hence [Dy" Dyt = Uy (c) +360(G+ GT) + O(62d). (9.6)
Since we have the freedom to multiply W(e,4) by any function of ¢ without

violating the assumptions we have made so far, we may impose a certain scaling on
a particular derivative of W. For our purposes, it seems natural to impose this scaling
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def
on the linear elastic moduli at the wells. Hence, we assume that a(e), = D2 W(e, U,(€))
satisfies

¢ €€ < Cale);£,6), la(e)] <1, (9.7)

for some 0 <y < 1, ¢, > 0 and for all symmetric £€M?*3. Note that the lower limit
in (9.7) allows for the poss1b1hty of a soft modulus that scales with a power of ¢. For

def
the third derivatives of W, we assume that on a neighbourhood A7, = {UeM*3.
U=U"|U-U,| < 2Meé} of U,,

ID% W(e, U) (£, €. 6)l < Cie "EP (9.8)
for all symmetric £ M3*3. Note that by (9.6) and the definition of M, (Dy"Dy)te N e
for ¢, & sufficiently small. Using (9.5) to (9.8), we expand W(e, U) about U,,, and get
W(e, Dy(x)) = W(e, (Dy(x )TD?/( 2))%)
= W(e’ Uz(x) <D2 C Uz(x)( )) %68(G+GT)%66(G+GT)>
+0(e382)+()( 3143y, (9.9)
where we have used the fact that D, W(e, U;,,(¢)) = 0. Note that, using (9.7), the
quadratic term in (9.9) is larger than
e, 284G+ GY)2. (9.10)
Since J(G'+GT) = I+ ')+ o0(1), it is reasonable to ignore the error terms in (9.9)
provided that €382+ €383 < 77262, i.e. provided
8 < e, (9.11)
We now note that i(F +FT) = H,, +0(e), so that 1ed(G+G") = e(}(Dz+Dz")—
H;,)+O(e?). Hence the quadratic term in (9.9) can be written

1e2(D% W(e, Uy (€ €)) 3(Dz+Dz%)— H,yy), (3(Dz4+Dz")— H, () > + O(e* +€%9), (9.12)

()

and the error term in this expression is small compared to the coefficient €7*%6* in
(9.10) provided
Y L4 (9.13)

The conditions (9.11) and (9.13) place the restriction 2y+u <2 on W.
Fixing then ¢ # 0, and setting u(x) = ez(x), E; = el;, we obtain as an approximate
expression for the total free energy

Jg lwz’(x) +%<“z‘(x>(e(u(x)) _Ei(z))’ e(u(x)) _Ei(x)>] dz, (9.14)

where w; = w(e);, a;=a(e); and e(w) = 3Du+Du"). Performing a preliminary
minimization over the function ¢(x), we finally obtain the expression for the total free
energy

= f Wisn (e(w)) da, (9.15)
Q

where Win(e) = min {w,+ o, (e—E,),e—E;)}, (9.16)

1<i<N
as given in (1.7).
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Although this formal procedure does lead to the KRS integrand (9.16), it is not
clear why the ansatz (9.3), (9.4) with ¢ <& < €7*1 is valid, or why the
minimizers % of (9.15) subject to appropriate boundary conditions should respect the
hypothesis that 1+Dwu(x) is sufficiently near the bottom of the energy wells,
particularly in the case of incompatible £, or distinct w;. Furthermore, any such
expansion would appear to encounter difficulties when the second and third
derivatives of W do not respect the condition 2y + u < 2. Kohn’s derivation does not
suffer from these difficulties, but is based on the assumed form (9.1) that seems hard
to justify physically.

Another approach is given by Grinfel’d (1986); his ‘physically linear’ expansion
preserves frame-indifference and, in the context of our forms of the energy function,
would not affect the wells.

(b) Interfaces

From now on we consider the case when all the w, are equal (without loss of
generality, all w, = 0), since this corresponds to the potential well structure (1.1) for
the nonlinear theory. We first discuss interfaces. As we have seen, interfaces between
deformation gradients at minimum energy correspond to rank-one connections
between wells. Given a pair of distinct wells SO (3) U, and SO (3) U, in the nonlinear
theory, where U, = Uf >0, an interface between them with normal = thus
corresponds to matrices 4, = R, U,, A, = R, U,, R,€S0 (3) with

A,—A4,=a@n, (9.17)
for some a. Necessary and sufficient conditions for this to be possible are given by
Proposition 2.12. In the KRS theory, a typical well has the form 1+ E,+ 4, E, = K7,
where A denotes the set of skew 3 x3 matrices. Thus an interface with normal n
between two wells 1+K£,+ 4, 14+K,4+ 4 corresponds to matrices 4, = 1+ K, +K,,
A, = 1+ E,+ K, satisfying (9.17) with K|, K, € 4. A necessary and sufficient condition
for an interface connecting the two wells to exist is that (Roitburd 1978)

E,—E =3{a®n+n® a) (9.18)
for non-zero vectors a,ne R®?. If (9.18) holds, then all possible interfaces are given by

K,—K, =4+i{c®@n—n® a), (9.19)
the interface normals being parallel to either = or a.
To compare the two theories, we choose U, = U, (¢), U, = U,(¢), where
Ule) =14+el,+Z,(¢), U,e)=1+ecH,+7Z,(¢), (9.20)

with H, and H, distinct and symmetric, and Z,(¢) = o(¢). In the KRS theory,
this corresponds to taking K, = ef,, K, = eH,. Suppose first that SO (3) H,(¢) and
SO (3) Uy(e) have a rank-one connection for all sufficiently small ¢ > 0. By Proposition
2.12 the matrix

def

Cle) = Ul(e)_l U2(€)2 UI(G)AI = 1+2e(H,—H,)+o(e)

has eigenvalues A,(e) < 1 = A,(e) < Ay(e). Let e,(€), ey(€), e5(¢) denote corresponding
orthonormal eigenvectors. Then

(C(e)—1)/e = 2(H,— H,)+o(1) (9.21)
Phil. Trans. R. Soc. Lond. A (1992)
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has eigenvalues p,(¢) = (A;(e)—1)/e with corresponding eigenvectors e,(e). Let u, <
My < iy denote the eigenvalues of 2(H,—H,) with corresponding orthonormal
eigenvectors e,, €,, €;. It follows from (9.21) that lim,__, x#,(€) = p;, so that in particular
My = 0. Therefore

Hy—H =3a®@n+nQ® a) (9.22)
with n=(Ug— )" [ =V (—py) e £V (13) €3], (9.23)
a = g(ps— ) [V (— 1) €1 £V (115) €3] (9.24)

It also follows from (9.24) that if ¢ = 1 or 3 with g, # 0, then (with an appropriate
choice of signs for e;(€)) lim_,,e,(€) = e;. Comparing (9.23), (9.24) with the formula for
m in Proposition 2.12, we deduce that the interface normals in the nonlinear theory
converge as €0 to those for the KRS theory.

Conversely, suppose that 2(H, — H,) has middle eigenvalue u, = 0. Thus according
to the KRS theory there exist interfaces between the wells. However, without
adjustment of the higher order terms Z;(¢) in (9.20) one cannot assert that interfaces
between SO (3) U,(€) and SO (3) U,(e) exist in the nonlinear theory. For example,
taking U,(e) = 1+¢H,, Uy(e) = 1+¢ell, we have

det (C(e)—1) = (det U,(¢)) "2 det (Uy(e)® — U, (€)?)
= (det U, (¢)) 2 det (2¢(H, — H,) + *(H; — H%)),

and if this is zero for all sufficiently small ¢ > 0 then det (H;—H?) = 0. This last
condition is not satisfied in general; for example, one can take

2 0 0 31 0
H=|0 4 o H,=[1 5 o]
00 2 00 1

(c) Simple and multiple layering
We now consider the analog of the analysis in §§5 and 6 in the KRS theory. The
two wells SO (3)S*, SO (3) S~ become the wells 1+ E*+ A4, 1+ E~+ A respectively,
where 1+E* =1(8*+(S*)T). We characterize the overall deformation gradients
F = Dy(x) compatible with azero-energy microstructure in the KRS theory. Following
the line of reasoning in §§5 and 6, we see that this is equivalent to characterizing
those F e M®*® for which there is a sequence y — Fa in W ?(2; R®), p > 1, such that

the Young measure (v,),.o corresponding to Dy satisfies

def

supprv, € L ={1+E"+A4} U {1+E + 4} ae xef.

Since F = {v,, A) a.e., it follows that a necessary condition on F is that it belongs to
the convex hull & of &, namely

& = (FeM Y F+F")—1=AE"+(1—)E~, 0 <A< 1}, (9.25)

Conversely, if F € & then a sequence y? X Fain Wt *(2; R?) may be constructed by
simple layering of S*+ K and S~ + K for some K € A. The characterization of (9.25) is
well known (cf. Kohn 1991 a; Pipkin 1991; Khachaturyan 1983).
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Figure 12. Microstructure formed from twins and reciprocal twins exhibiting large rotations.
See §9d. The figure is drawn with ¢ = 0.176 and with e, perpendicular to the page.

As pointed out in the introduction, there is a significant difference between (9.25)
and the corresponding set in the nonlinear theory. Note that the only ¥ corresponding
to a simply layered zero-energy microstructure in the nonlinear theory are those for
which Oy = 1 or C}; = 1462 (i.e. the straight parts of the boundary of R in figure 1),
while in the KRS theory every F € & corresponds to a simply-layered microstructure.
Furthermore, Theorem 7.1 asserts that if C,;=1 or C; =1+06* then the
microstructure in the nonlinear theory is unique and given by simple layering. In
contrast, this uniqueness fails in the linearized theory. For example, if ¥/ = 1, so that
LF+F")—1 =4E"+E"), then F can be achieved both by simple layering and by
multiple layering with Young measure

v, = 10gr + (30 sty + 20 5y1) + 205 (9.26)

For an analysis and discussion of this degeneracy of the KRS theory (see Kohn
1990a).
(d) Large rotations

A simple example of an energy minimizing microstructure with large rotations can
be constructed as follows. Consider again the two variants SO (3)S* U SO (3) S~ with
S* = 1+4de; ® e,,0 > 0. The rank-one connections between 8* and the well SO (3) S~
are given by

St—8" =28e,®e,, RST—S"=a®@e,, (9.27)

where R, is given by (6.10), and @ can be found from the formula a = (R, 8™ —S")e,.
We can generate the following sequence of rank-one connections by premultiplying
(9.27) by powers of R, :

St =87 = 20e; ® ey, RS~ —S"=a®e,,
R S*—R, 8" =20R,e;,®e,, RIS —R,S"=R,a®e,,
R:ST— RS~ =20R%e; ®e,, R3S —RISt=RiaQ® e,
R3StT—R3S™ =20R3e¢; @ e,, ete.
Phil. Trans. R. Soc. Lond. A (1992)
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With a suitable choice of the reference configuration €2, the conditions (9.28) are
sufficient that there is a deformation ye W' *(Q; R®) with gradients S~, S*, R, S,
R, 8", R?S™, R:S*, R3S™, R3S*, etc. Furthermore, it is clear that if W(-,8) has wells
at SO (3)8~ U SO (3)8*, then this function minimizes the total energy

J W(Dy(x), 0) de.
Q

Figure 12 shows a picture of this deformation drawn accurately with § = 0.176; this
corresponds to an angle of shear of 10°. It would not be possible to model
microstructures of this kind with the KRS theory because of the cumulatively large
rotations. In fact, the corresponding picture to figure 12 in the linear theory has the
property that the deformed triangular prisms get larger further along the rod, while
the overall deformed shape is not circular. See Bhattacharya (1991) for pictures of
the deformed shape according to the linear theory and further comparisons.

Tt is likely that even more dramatic differences between the present and linearized
theories can be demonstrated. These would occur when the stress is calculated
according to each theory for the minimizer (or macroscopic stress in the case of
minimizing sequences) subject to given boundary conditions.

10. Remarks on limited fineness

In this section we discuss possible explanations for limited fineness. The most
common line of thought supported by elementary scaling calculations (Burkart &
Read 1953 ; Khachaturyan 1967; Willaime & Gandais 1972; Roitburd 1978; Ball &
James 1987, §6) reasons that limited fineness is due to a small surface energy per unit
area ¢ on twin boundaries that contributes significantly to the total energy of a fine
microstructure. (Recent work of Kohn and Miiller (1991a,b) on a model two-
dimensional problem suggests that the total bulk plus surface energy scales with
respect to ¢ with a different power from that predicted by the elementary scaling
calculation. See also work of Leo & Sekerka (1989), Parry (1987), Fonseca (1989,
1990), Gurtin & Struthers (1990) and Kinderlehrer & Vergara-Caffarelli (1989) for
more sophisticated models of surface energy than a constant energy per unit area.)
From this perspective the observations of Schryvers et al. (1988) of accurately
periodic twin bands with a period of seven atomic spacings in NiAl would imply that
NiAl has an extremely small surface energy relative to its bulk energy in some fixed
configuration. In contrast, typical twin band spacings for a similar microstructure in
InTl are on the order of 10 um. If both InTl and NiAl were to be governed by the
simple scaling calculation, the ratio of twin boundary energy to bulk energy in these
two materials would have to differ by a factor of more than 1000. This huge
difference is difficult to justify in terms of independent measurements of surface
energy alone. For example, twin boundary energies reported by Murr (1975) in a wide
variety of materials (but not NiAl or InTl) vary by a factor of only about 100.
Admittedly, these measurements are based on another theory involving both bulk
and surface energies which would seem to be open to other criticisms. Alternatively,
the bulk energy in these two materials would have to be greatly different. Such a
variation of bulk energy from material to material would not be completely
surprising in that certain moduli can vary by a factor of 100 with temperature in a
single material.
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An additional mechanism for limited fineness is suggested by a recent paper by
Ball et al. (1991). They study the dynamics of interface refinement for a model one-
dimensional partial differential equation that has as a Lyapunov function a free
energy consisting of kinetic energy plus a nonconvex ‘elastic’ energy, but having no
interfacial energy contribution. This free energy is bounded below, does not have a
minimizer in any reasonable sense, and has minimizing sequences involving finer and
finer arrays of interfaces. The dissipation is viscoelastic. The analysis of the model
shows that as time ¢ — co the dynamic solution never realizes an absolute minimizing
sequence, and the theoretical and numerical evidence strongly suggests that it
typically gets ‘stuck’ at a weak relative minimizer having finitely many interfaces.
By contrast, in a closely related one-dimensional model in which the elastic energy
is non-local, the analysis shows that the dynamic solution realizes an absolute
minimizing sequence for generic initial data Which of these two scenarios is more
appropriate for dynamical theories of elastic crystals is unclear. The situation is
further complicated by the possibility that for models incorporating small surface
energy, solutions to the dynamical equations may remain practically stationary for
immensely long times at configurations far from an equilibrium (cf. Carr & Pego
1988, 1989).

In addition to the above ideas, permanent defects or local variations of composition
may play a role in some cases. For example, Schryvers et al. (1988) argue that the
tweed microstructure observed at § > @, in NiAl is caused by the presence of local
defects. In the absence of more definite theoretical and experimental evidence, it
thus seems premature to decide on a complete explanation for limited fineness.
Nevertheless, subject to the experiments proposed here, we argue that much insight
comes easily from a study of the minimizing sequences assuming zero interfacial
energy. In the case of microtwinning, recent experiments of Schryvers et al. (1991)
indicate that the observed twin proportion is predicted correctly by the bulk theory.
This suggests possibly that for extremely fine microtwinning the surface energy is
essentially zero and that on some other microscopic basis the material selects twin
band spacings p and ¢ such that p and ¢ are small multiples of atomic spacings and
p/q is near the value predicted by considerations of minimizing sequences.

R.D.J. thanks NSF and AFOSR, ARO and ONR for supporting this work through NSF/DMS-
8718881, ARO/28987-MA/270 63-MA-SM and ONR/N0014-19-J-4034. The research of J.M.B.
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igure 10. A photomicrograph showing layers within layers in barium titanate. The irregular lines
present grain boundaries. The surface of the specimen has been ground, polished and etched after
wing been transformed from the cubic to the tetragonal phase by cooling. See table 1 for
ansformation data on BaTiO,. See also Remark (6.3), and the construction of Theorem 6.1.
hotomicrograph courtesy of Philips Research Laboratories, Aachen (see Arlt 1990).
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